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Example 1: Binary Choice Model

Consider the regression model:

y∗i = Xiβ + ui, ui ∼ (0, σ2), i = 1, 2, · · · , n,

where y∗i is unobserved, but yi is observed as 0 or 1, i.e.,

yi =

1, if y∗i > 0,

0, if y∗i ≤ 0.

E.g.) y∗i : productivity of market work (continuous variable)

yi: whether an individual is employed or not (discrete variable)

Note that we do not specify the distribution of ui.
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Consider the probability that yi takes 1, i.e.,

P(yi = 1) = P(y∗i > 0)

= P(ui > −Xiβ)

= P
(
ui
σ

> −Xi
β

σ

)
= P(u∗i > −Xiβ

∗)

= 1− P(u∗i ≤ −Xiβ
∗)

= 1− F (−Xiβ
∗)

= F (Xiβ
∗),

where the last equality holds if the distribution of u∗i is symmetric.
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The distribution function of u∗i is F (x) =
∫ x
−∞ f(z)dz.

If u∗
i follows standard normal distribution, we call Probit model.

F (x) =

∫ x

−∞

1

2π
exp

(
−1

2
z2
)
dz

If u∗
i follows logistic distribution, we call Logit model.

F (x) =
1

1 + exp(−x)
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Since yi is a binary variable, yi follows Bernoulli distribution.

Then, the density function of yi is given by

f(yi) =
[
P(yi = 1)

]yi[P(yi = 0)
]1−yi

=
[
F (Xiβ

∗)
]yi[1− F (Xiβ

∗)
]1−yi .
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Using this density function, we define the likelihood function:

L(β∗) = f(y1, · · · , yn)

=

n∏
i=1

f(yi)

=

n∏
i=1

[
F (Xiβ

∗)
]yi[1− F (Xiβ

∗)
]1−yi .

The log-likelihood function is:

logL(β∗) =
n∑

i=1

[
yi logF (Xiβ

∗) + (1− yi) log[1− F (Xiβ
∗)]
]
.
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The F.O.C. is:

∂ logL(β∗)

∂β∗ =

n∑
i=1

(
yiX

′
if(Xiβ

∗)

F (Xiβ∗)
− (1− yi)X

′
if(Xiβ

∗)

1− F (Xiβ∗)

)

=

n∑
i=1

X ′
ifi(yi − Fi)

Fi(1− Fi)
= 0,

where fi = f(Xiβ
∗) and Fi = F (Xiβ

∗).
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The S.O.C. is:

∂2 logL(β∗)

∂β∗∂β∗′ =

n∑
i=1

X ′
i
∂fi
∂β∗ (yi − Fi)

Fi(1− Fi)
+

n∑
i=1

X ′
ifi

∂(fi−Fi)
∂β∗

Fi(1− Fi)
+

n∑
i=1

X ′
ifi(yi − Fi)

∂[Fi(1− Fi)]
−1

∂β∗

=

n∑
i=1

X ′
iXif

′
i(yi − Fi)

Fi(1− Fi)
−

n∑
i=1

X ′
iXif

2
i

Fi(1− Fi)
+

n∑
i=1

X ′
ifi(yi − Fi)

Xifi(1− 2Fi)

[Fi(1− Fi)]2

is a negative definite matrix.
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For maximization, the method of scoring is:

β∗(j+1) = β∗(j) +

[
− E

(
∂2 logL(β∗(j))

∂β∗∂β∗′

)]−1
∂ logL(β∗(j))

∂β∗

= β∗(j) +

[
n∑

i=1

X ′
iXi

(
f
(j)
i

)2
F

(j)
i

(
1− F

(j)
i

)]−1 n∑
i=1

X ′
if

(j)
i

(
yi − F

(j)
i

)
F

(j)
i

(
1− F

(j)
i

) ,

where F
(j)
i = F (Xiβ

∗(j)) and f (j) = f(Xiβ
∗(j)).

Note taht we use the following relationship:

E[yi] = P(yi = 1) = Fi(Xiβ
∗) = Fi.
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The Fisher information matrix is given by:

I(β∗) = −E
[
∂2 logL(β∗)

∂β∗∂β∗′

]
=

n∑
i=1

X ′
iXif

2
i

Fi(1− Fi)
.

By the asymptotic normality,

√
n(β̂∗ − β∗)

d−→ N

(
0, lim

n→∞

(
− 1

n
E
[
∂2 logL(β∗)

∂β∗∂β∗′

]−1
)
,

where β̂∗ := limj→∞ β∗(j) denotes the MLE of β∗.
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Example 2

Consider the two utility functions:

U1i = Xiβ1 + ϵ1i, (1)

U2i = Xiβ2 + ϵ2i. (2)

We purchase a good when U1i > U2i and do not purchase otherwise.

yi takes 1 if we purchase the good and takes 0 otherwise.

We can observe yi, but can NOT observe Uji, j ∈ {1, 2}.
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Taking a difference between (1) and (2), we have

U1i − U2i = Xi(β1 − β2) + (ϵ1i − ϵ2i)

⇐⇒ U∗
i = Xiβ

∗ + ϵ∗,

where U∗
i := U1i − U2i, β

∗ := β1 − β2 and ϵ∗ := ϵ1i − ϵ2i.

Then, we have the following relationship:

yi =

1 if U∗
i > 0,

0 if U∗
i ≤ 0,

which is the same situation as Example 1 and the assumption that ϵ∗i follows a symmetric

distribution is necessary.
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Example 3

Consider the questionnaire:

yi =

1, if the ith person answers YES,

0, if the ith person answers NO.

Consider the following linear regression model:

yi = Xiβ + ui.

For instance, the question is ”Do you have a car?” and Xi includes income, living place,

and family size, etc.
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When E[ui] = 0,

E[yi] = Xiβ.

Because of the linear function, Xiβ takes the value from −∞ to ∞.

For instance, if an individual i has a high income, lives in the countryside and has many

children, Xiβ takes a value that is greater than 1.

However, since E[yi] means the probability that an individual i has a car, E[yi] must be in

[0, 1].
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Alternatively, consider the following model:

yi = P(yi = 1) + ui,

where ui is a discrete type of random variable, i.e.,

ui =

1− P(yi = 1) with prob. P(yi = 1),

−P(yi = 1) with prob. 1− P(yi = 1) = P(yi = 0).

Consider that P(yi = 1) is connected with the distribution function F (Xiβ) as follows:

P(yi = 1) = F (Xiβ).

Assuming that F (·) is normal distribution or logistic distribution results in probit model or

logit model, respectively.
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Example 4: Ordered probit or logit model

Consider the regression model:

y∗i = Xiβ + ui, ui ∼ (0, 1), i = 1, · · · , n,

where y∗i is unobserved, but yi is observed as 1, 2, · · · ,m, i.e.,

yi =



1, if −∞ < y∗i ≤ a1,

2, if a1 < y∗i ≤ a2,
...

m, if am−1 < y∗i ≤ ∞,

where a1, · · · , am−1 are assumed to be known.
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For instance, y∗i is hours worked per week and yi is a discrete variable such that

yi =



1, if y∗i ≤ 15,

2, if 15 < y∗i ≤ 20,
...

9, if 50 < y∗i .
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Consider the probability that yi takes 1, · · · ,m.

P(yi = 1) = P(y∗i ≤ a1)

= P(ui < a1 −Xiβ)

= F (a1 −Xiβ).

P(yi = 2) = P(a1 < y∗i ≤ a2)

= P(a1 −Xiβ < ui ≤ a2 −Xiβ)

= F (a2 −Xiβ)− F (a1 −Xiβ).
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P(yi = m) = P(am−1 < y∗i )

= P(am−1 −Xiβ < ui)

= 1− F (am−1 −Xiβ).

We have

P(yi = j) = F (aj −Xiβ)− F (aj−1 −Xiβ), ∀j ∈ {0, 1, · · · ,m}

where a0 = −∞ and am = ∞.
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Define the following indicator functions:

Iij =

1, if yi = j,

0, otherwise.

The likelihood function is:

L(β) =

n∏
i=1

[
F (a1 −Xiβ)

]Ii1[
F (a2 −Xiβ)− F (a1 −Xiβ)

]Ii2
· · ·
[
1− F (am−1 −Xiβ)

]Iim
=

n∏
i=1

m∏
j=1

[
F (aj −Xiβ)− F (aj−1 −Xiβ)

]Iij
.
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The log-likelihood function is:

logL(β) =

n∑
i=1

m∑
j=1

Iij log
[
F (aj −Xiβ)− F (aj−1 −Xiβ)

]
.

The first derivative of logL(β) w.r.t. β is:

∂ logL(β)

∂β
=

n∑
i=1

m∑
j=1

−IijX
′
i

[
f(aj −Xiβ)− f(aj−1 −Xiβ)

]
F (aj −Xiβ)− F (aj−1 −Xiβ)

= 0.

Usually, normal distribution or logistic distribution is chosen for F (·).
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Example 5: Multinomial logit model

The ith individual has m+ 1 choices, i.e., j = 0, 1, · · · ,m.

P(yi = j) =
exp(Xiβj)∑m
j=0 exp(Xiβj)

=
exp(Xiβj)

exp(Xiβ0) + exp(Xiβ1) + · · ·+ exp(Xiβm)

=
exp(Xiβj)

1 + exp(Xiβ1) + · · ·+ exp(Xiβm)
=: Pij ,

where β0 = 0.
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Different from the ordered probit or logit model, the order does not matter.

For instance, Xi is IQ and yi indicates occupations: yi takes 1 if i is a cook, takes 2 if i is

a professor and takes 3 if i is an artist.

In using the multinomial logit model, a choice is set to be a comparison.

Therefore, if we set being a cook as a comparison, we interpret the estimation results as

follows:

one unit of increase in IQ increases the probability of being a professor relative to being a

cook by A%;

one unit of increase in IQ increases the probability of being an artist relative to being a cook

by B%.
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Note that

Pi0 =
1

1 + exp(Xiβ1) + · · ·+ exp(Xiβm)

Then, we have

Pij

Pi0
= exp(Xiβj) ⇐⇒ log

Pij

Pi0
= Xiβj .

The log-likelihood function is:

logL(β1, · · · , βm) =
n∑

i=1

m∑
j=1

dij logPij ,

where dij = 1 when the ith individual chooses jth choice, and dij = 0 otherwise.
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Example 6: Nested logit model

Consider the following 2 steps:

1 Choose YES or NO with probability PY and PN = 1− PY , respectively. Go to the next step

only if YES is chosen.

2 Choose A or B with probability PA|Y and PBY
, respectively.

For instance, the individual decides whether or not to buy a car in the first step and

chooses Audi or BMW.

Assume the logistic distribution.
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The probability that the ith individual chooses NO is:

PN,i =
1

1 + exp(Xiβ)
.

The probability that the ith individual chooses YES and A is:

PA|Y,iPY,i = PA|Y,i(1− PN,i) =
exp(Ziα)

1 + exp(Ziα)

exp(Xiβ)

1 + exp(Xiβ)
.

The probability that the ith individual chooses YES and B is:

PB|Y,iPY,i = (1− PA|Y,i)(1− PN,i) =
1

1 + exp(Ziα)

exp(Xiβ)

1 + exp(Xiβ)
.
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Xi means variables which affect the decision making on whether to buy a car:

annual income

distance from the nearest station

Zi means variables which characterize a car:

speed

fuel-efficiency

car company
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The likelihood function is:

L(α, β) =

n∏
i=1

P I1i
N,i

{[
(1− PN,i)PA|Y,i

]I2i[
(1− PN,i)(1− PA|Y,i)

]1−I2i
}1−I1i

=

n∏
i=1

P I1i
N,i(1− PN,i)

1−I1i

[
P I2i
A|Y,i(1− PA|Y,i)

1−I2i

]1−I1i

,

where

I1i takes 1 if ith individual decides not to buy a car in the first step and takes 0 otherwise;

I2i takes 1 if ith individual chooses A in the second step and takes 0 otherwise.
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Let individual i ∈ N decide not to buy a car, i ∈ A choose A and i ∈ B choose B.

Then, the likelihood function becomes:

L(α, β) =

n∏
i=1

P I1i
N,i(1− PN,i)

1−I1i

[
P I2i
A|Y,i(1− PA|Y,i)

1−I2i

]1−I1i

=
∏
i∈N

PN,i ×
∏
i∈A

(1− PN,i)PA|Y,i ×
∏
i∈B

(1− PN,i)(1− PA|Y,i).

The log-likelihood function is:

logL(α, β) =
∑
i∈N

PN,i +
∑
i∈A

(1− PN,i)PA|Y,i +
∑
i∈B

(1− PN,i)(1− PA|Y,i).
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Substituting the expressions above into the log-likelihood yields:

logL(α, β) =
∑
i∈N

PN,i +
∑
i∈A

(1− PN,i)PA|Y,i +
∑
i∈B

(1− PN,i)(1− PA|Y,i)

=
∑
i∈N

1

1 + exp(Xiβ)
+
∑
i∈A

exp(Ziα)

1 + exp(Ziα)

exp(Xiβ)

1 + exp(Xiβ)

+
∑
i∈B

1

1 + exp(Ziα)

exp(Xiβ)

1 + exp(Xiβ)
.

Using this, we can consider the F.O.C. and S.O.C. w.r.t. α and β.
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