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Example 1: Binary Choice Model

@ Consider the regression model:
yz* :X26+u17 Uq ~ (070_2)7 1= 1727"' , 1,

where y7 is unobserved, but y; is observed as 0 or 1, i.e.,

1, ifyr >0,

Yi =
0, ify; <0.
e E.g.) y/: productivity of market work (continuous variable)
y;: whether an individual is employed or not (discrete variable)
@ Note that we do not specify the distribution of u;.
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Example 1: Binary choice
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o Consider the probability that y; takes 1, i.e.,

P(y: = 1) = P(y} > 0)
= IP’(ui > —XZ,B)

=P <u7' > _Xlﬂ>
g g

=P(u; > —Xif7)
=1-Pu <-X;5%
=1-F(=Xif")

= F(X;8%),

where the last equality holds if the distribution of u; is symmetric.
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Example 1: Binary choice
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e The distribution function of u} is F(z) = [*__ f(z)d=.

o If u follows standard normal distribution, we call Probit model.

F()—/ﬁ ! L2 d
r) = _OOQTrexp 2z Z

o If u} follows logistic distribution, we call Logit model.

1

Flw) = 1+ exp(—z)
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Example 1: Binary choice
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@ Since y; is a binary variable, y; follows Bernoulli distribution.

@ Then, the density function of y; is given by

Jw) = [Py = D] [Pl = 0)]
= [F(GA7)] % [1 - F(X:87)]' 7.
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@ Using this density function, we define the likelihood function:
L(B*): 1" 7yn)

f(yi)

I
- 2

1

<.
I

I

i=1
@ The log-likelihood function is:
log L(B*) = Z [yi log F(X;8%) + (1 — y;) log[1 — F(X,ﬁ*)]]
i=1
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Example 1: Binary choice
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e The F.O.C. is:

dlog L(8*) _ zn: <yz’XZ{f(Xi5*) (1— yi)X{f(Xiﬁ*)>

o5 &\ P - F(X.57)
= Xlfilyi—F) 0
&~ F(-F) 7
=1

where f; = f(X;5%) and F; = F(X;3%).
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Example 1: Binary choice
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@ The S.O.C. is:
PlogL(F*) <~ Xighwi-F) X Xifi ,;B;) i [F(1 — F)] !
Sopae = RGT) o R Y Xl — BT

XIXifi(y —F) o XIXif? py X1 = 2F
_Z FI?—J D < Fi(1-F, +2sz vi— [F(i—F)]>

is a negative definite matrix.

Ryo Sakamoto

Econometrics Il TA Session #3



Example 1: Binary choice
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@ For maximization, the method of scoring is:

g+ Z gel) 4 | — E<32 log L(ﬁ*“’))] ~ 9log L(3"))

D

i=1 Fi( )( - Fi(j))

f(] (yz F.(j))
P F(J))

where YY) = F(X;8*0)) and fU) = f(X;8°0)).

@ Note taht we use the following relationship:

Elyi] = P(yi = 1) = Fi(Xif") = F;

Ryo Sakamoto

Econometrics Il TA Session #3



Example 1: Binary choice
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@ The Fisher information matrix is given by:

0?log L(B } Z”: X;Xf2

1) = 8| S -

=1

@ By the asymptotic normality,

-1
- % o (2] ),

where 3* = lim;_, %) denotes the MLE of 8*.
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Example 2

@ Consider the two utility functions:

Ui = XiB1 + €14, (1)
Ui = X3 + €2;. (2)

@ We purchase a good when Uy; > Us; and do not purchase otherwise.
@ y; takes 1 if we purchase the good and takes 0 otherwise.

@ We can observe y;, but can NOT observe Uj;, j € {1,2}.
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e Taking a difference between (1) and (2), we have

Ui — Ugi = Xi(B1 — P2) + (€15 — €2;)
—= U =X,p"+¢€,

where Uz* = Uli — UQZ', ,8* = /81 — ,82 and €* := €1; — €9;.
@ Then, we have the following relationship:

1 ifU >0,
Yi =
0 ifU <0,
which is the same situation as Example 1 and the assumption that € follows a symmetric

distribution is necessary.
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Example 3
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Example 3

@ Consider the questionnaire:
1, if the ith person answers YES,

Yi =
0, if the ith person answers NO.

@ Consider the following linear regression model:

Yi = Xil + wi.

@ For instance, the question is "Do you have a car?” and X; includes income, living place,

and family size, etc.
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Example 3
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e When E[u;] =0,
Ely:] = Xip.

@ Because of the linear function, X;5 takes the value from —oo to oo.

@ For instance, if an individual ¢ has a high income, lives in the countryside and has many

children, X;[ takes a value that is greater than 1.

@ However, since E[y;] means the probability that an individual ¢ has a car, E[y;] must be in
[0, 1].
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Example 3
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@ Alternatively, consider the following model:
yi =P(yi = 1) + i,

where u; is a discrete type of random variable, i.e.,

1 —P(y; =1) with prob. P(y; = 1),
U; =
—P(y; =1) with prob. 1 —P(y; = 1) = P(y; = 0).

o Consider that P(y; = 1) is connected with the distribution function F'(X;3) as follows:
P(y: = 1) = F(Xip).

@ Assuming that F(-) is normal distribution or logistic distribution results in probit model or

logit model, respectively.
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Example 4: Ordered probit and logit
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Example 4: Ordered probit or logit model

@ Consider the regression model:
y: :Xlﬁ_‘_ula Ui ~ (071)7 1= 17 >y 1,

where y is unobserved, but y; is observed as 1,2,--- ,m, i.e.,
1, if —oco<y <a,
27 if a1 <y:< SGQ,

Yi =

m, if am—1 < yz* < oo,

where a1, -+ ,a,;,_1 are assumed to be known.

Ryo Sakamoto
21 /37

Econometrics Il TA Session #3



Example 4: Ordered probit and logit
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@ For instance, y; is hours worked per week and y; is a discrete variable such that
1, ify; <15,

2, if 15 < y* < 20,

Yi

9, if50 <y,
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Example 4: Ordered probit and logit
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o Consider the probability that y; takes 1,--- ,m.

P(yi =1) =P(y; < a1)
=P(u; < a1 — X;0)
— F(a1 — X,8).
P(y; = 2) = P(a; <y} < ap)
=P(a1 — Xi < u; < az — X;f3)
= F(ay — X;B) — F(a; — Xif3).
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Example 4: Ordered probit and logit
0000®00

P(y; =m) = P(am-1 <y;)
= ]P’(am,l — Xzﬂ < Ul)
=1- F(am,1 - Xlﬁ)

@ We have
P(y; = j) = F(a; — XiB) — F(aj—1 — Xif), Vj € {0,1,--- ,m}
where ¢g = —o0 and a,, = 00.
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Example 4: Ordered probit and logit
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@ Define the following indicator functions:

1, ify; =3y,
Iij _ Yi=1J

0, otherwise.

@ The likelihood function is:

IiQ I’Lm
)

L() = f[ [F(a1 — Xiﬁ)]lﬂ [F(a2 ~ XiB) — F(a1 — Xl.g)} . [1 — F(am_1 — X8

-
Il
A

Ryo Sakamoto

Econometrics Il TA Session #3



Example 4: Ordered probit and logit
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@ The log-likelihood function is:
log L(B Z Z Iijlog [ — XiB) — Faj_1 — Xlﬂ)]
i=1 j=1

@ The first derivative of logL(8) w.r.t. [ is:

8logL n =1 X] {f(aj - XiB) — flaj—1 — Xiﬁ)} B
ZZ F(a; — XiB) — F(aj—1 — XiB) =0

=1 j=1

@ Usually, normal distribution or logistic distribution is chosen for F'(-).
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Example 5: Multinomial logit
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Example 5: Multinomial logit model

@ The ith individual has m + 1 choices, i.e., 7 =0,1,--- ,m.

exp(Xzﬂj)
2o exp(XiB;)
exp(X;53))
exp(X;fo) +exp(XiB1) + - - - + exp(XiBm)
exp(X,ﬂj)

= = _P~~7
1 +exp(X;B1) + -+ exp(Xifm) *J

P(y; = j) =

where [y = 0.
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Example 5: Multinomial logit
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o Different from the ordered probit or logit model, the order does not matter.

@ For instance, X; is 1Q and y; indicates occupations: y; takes 1 if i is a cook, takes 2 if i is
a professor and takes 3 if 7 is an artist.

@ In using the multinomial logit model, a choice is set to be a comparison.
@ Therefore, if we set being a cook as a comparison, we interpret the estimation results as
follows:
e one unit of increase in IQ increases the probability of being a professor relative to being a

cook by A%;
e one unit of increase in 1Q increases the probability of being an artist relative to being a cook

by B%.
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Example 5: Multinomial logit
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@ Note that
1
Py =
1+ exp(X;B1) + -+ exp(Xifm)
@ Then, we have
P P
P—Z) = exp(Xifj) <= log 5= Py = Xifs;.

@ The log-likelihood function is:

n m

IOgL(ﬁh"' aﬁm = ZZ ij Ingua

=1 :
where d;; = 1 when the ith individual chooses jth choice, and d;; = 0 otherwise.
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Example 6: Nested logit
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Example 6: Nested logit model

o Consider the following 2 steps:

@ Choose YES or NO with probability Py and Py = 1 — Py, respectively. Go to the next step
only if YES is chosen.
@ Choose A or B with probability P4y and Pp, , respectively.

@ For instance, the individual decides whether or not to buy a car in the first step and
chooses Audi or BMW.

@ Assume the logistic distribution.
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Example 6: Nested logit
[e]eX Yololele}

@ The probability that the ith individual chooses NO is:

1
Pyj=—
Ny exp(X;3)

@ The probability that the ith individual chooses YES and A is:

exp(Z;«) exp(X;5)
PalyiPyi = Pays(1 — Py;) = .
APy = Pajya( Ni) = + exp(Ziat) 1 + exp(Xif3)

@ The probability that the ith individual chooses YES and B is:

1 exp(Xif3)

PB|Y,iPYﬂ' = (]‘ - PA|Y,i)(1 - PNJ) = 1+ exp(Zioz) 1+ eXp(X@ﬁ) .
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Example 6: Nested logit
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@ X,; means variables which affect the decision making on whether to buy a car:

e annual income

o distance from the nearest station
@ Z; means variables which characterize a car:

e speed
o fuel-efficiency

@ Car company

Ryo Sakamoto

Econometrics Il TA Session #3



[e]e]ele] lele)
@ The likelihood function is:

H Ph, { [ (1- PN7¢)PA|Y,Z‘:| " [(1 — Pni)(1 - PAY,i):| 1_12‘}

lf[lz,
HPI“ —PN,z')”“[PfIﬁh( PAlm)lIﬂ 7

1-1y;

where

o [y; takes 1 if ith individual decides not to buy a car in the first step and takes 0 otherwise;

o Io; takes 1 if 4th individual chooses A in the second step and takes 0 otherwise.
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Example 6: Nested logit
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@ Let individual i € N decide not to buy a car, i € A choose A and i € B choose B.

@ Then, the likelihood function becomes:

1_11’1,
HP[u _ PN,i)l_I“ |:P£2§, ( PA|Y,i)1_12i:|

= H Py i % H(1 — Pn i) Pajy; % H(1 — Pni)(1 = Pyjy;)-
1eEN €A i€B

@ The log-likelihood function is:

log L(a, ) = Y Prni+ > (1= Pni)Payi+ Y (1= Pni)(1— Pay)-
ieN icA ieB
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Example 6: Nested logit
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@ Substituting the expressions above into the log-likelihood yields:

log L(av, 8) = Z Pyi+ Z (1= Pni)Payi + Z (1= Pni)(1 = Payy,)
ieN icA ieB

- 1 exp(Z;a) exp(X;f)
B ZEZN 1+ exp(X;0) EA 1+ exp(Z;a) 1 + exp(X;f)

1 exp(Xif3)
+ iGZB 1+ exp(Z;ia) 1+ exp(X;0)

@ Using this, we can consider the F.O.C. and S.0.C. w.r.t. « and £.
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