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1.Limited Dependent Variable Model (制限従属変数モデル)

• Buying a Car
𝑦! = 𝑥!𝛽 + 𝑢!

𝑦!: 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 𝑓𝑜𝑟 𝑎 𝑐𝑎𝑟, 𝑥! ∶ income, price of the car…

• Working-hours of Wife
𝑦!∗ = 𝑥!𝛽 + 𝑢!

𝑦!: 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 − ℎ𝑜𝑢𝑟𝑠 𝑜𝑓 𝑤𝑖𝑓𝑒,
𝑥! ∶ the number of children, age, education, income of husband…
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1.1Truncated Regression Model

• 𝑦! = 𝑋!𝛽 + 𝑢!, 𝑢!~𝑁(0, 𝜎#)
𝑤ℎ𝑒𝑛 𝑦! > 𝑎,𝑤ℎ𝑒𝑟𝑒 𝑎 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑖 = 1,2, … , 𝑛.

• 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑦! > 𝑎, 𝑤ℎ𝑒𝑛 𝑦! ≤ 𝑎, 𝑦! 𝑖𝑠 𝑛𝑜𝑡 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ,
𝑠𝑢𝑝𝑝𝑜𝑠𝑒: 𝑢! ~ 𝑁(0, 𝜎#) ⟹

𝑢!
𝜎
~ 𝑁(0,1)

• 𝐸 𝑢! 𝑦! > 𝑎 = 𝐸 𝑢! 𝑋!𝛽 + 𝑢! > 𝑎 =?
𝐸 𝑦! 𝑦! > 𝑎 = 𝐸 𝑦! 𝑋!𝛽 + 𝑢! > 𝑎 =？
𝑡ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑜𝑓 𝑀𝐿𝐸 =?
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Review: truncated normal distribution

• Probability density function of normal distribution
𝑋 ~ 𝑁(𝜇, 𝜎#)

𝑓 𝑥 =
1
2𝜋𝜎#

exp(−
𝑥 − 𝜇 #

2𝜎#
)

• Probability density function and cumulative distribution function of standard 
normal distribution

𝑋 ~ 𝑁 0,1

𝜙(𝑥) =
1
2𝜋

exp −
𝑥#

2

Φ 𝑥 = h
$%

& 1
2𝜋

exp −
𝑧#

2
𝑑z = h

$%

&
𝜙 𝑧 𝑑𝑧
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• f(x) and F(x) are given by:

𝑋 ~ 𝑁(0, 𝜎!)
𝑓 𝑥 = "

!#$!
exp − % !

!$!
= "

$
𝜙(%

$
),

𝐹 𝑥 = 2
&'

% 1
2𝜋𝜎!

exp −
𝑧 !

2𝜎!
𝑑𝑧 = Φ(

𝑥
𝜎
)

• Definition of a truncated normal distribution

𝑋 ~ 𝑁 𝜇, 𝜎! , X > a

𝑓 𝑥 𝑥 > 𝑎 =
𝑓(𝑥)

∫(
'𝑓 𝑥 𝑑𝑥

=

1
2𝜋𝜎!

exp(− 𝑥 − 𝜇 !

2𝜎! )

∫(
' 1

2𝜋𝜎!
exp − 𝑥 − 𝜇 !

2𝜎! 𝑑𝑥

=
1
𝜎 𝜙

𝑥 − 𝜇
𝜎

1 − Φ 𝑎 − 𝜇
𝜎
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• Mean of truncated normal distribution
𝐸 𝑋 𝑋 > 𝑎 = h

'

%
𝑥𝑓 𝑥 𝑥 > 𝑎 𝑑𝑥

=
∫!
" & #

$%&$
)*+ $ '() $

$&$
,&

∫!
" #

$%&$
)*+ $ '() $

$&$
,&

=
-. !()

& /0(2$3 !()
& )

2$3(!()& )

=
-.(!()& )

2$3(!()& )
+ µ
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• Transformation of numerators and denominators

!
!

"
𝑥

1
2𝜋𝜎#

exp −
𝑥 − 𝜇 #

2𝜎# 𝑑𝑥

𝑧 = %&)
$

,𝑧 > (&)
$

.

= 𝜎 ∫!"#
$

" 𝑧(2𝜋)$%/#exp(− %
#
𝑧#)𝑑𝑧 + µ∫!"#

$

" (2𝜋)$%/#exp(− %
#
𝑧#)𝑑𝑧

𝑡 = "
!
𝑧!,𝑡 > "

!
(%&)
$
)!.

= 𝜎!
%
#(
!$(
) )%

"
(2𝜋)$%/#exp −𝑡 𝑑𝑡 + 𝜇 1 − Φ

𝑎 − 𝜇
𝜎

= 𝜎𝜙 !$(
)

+ 𝜇(1 − Φ !$(
)

)

= ∫!"#
$

" (𝜎𝑧 + 𝜇) 2𝜋 $&% exp(− %
#
𝑧#)𝑑𝑧
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2
(

'
(2𝜋𝜎!)&"/!exp −

1
2𝜎!

(𝑥 − 𝜇)! 𝑑𝑥 = 2
%&)
$

'
(2𝜋)&"/!exp(−

1
2
𝑧!) 𝑑𝑧

= 1 − ∫&'
"#$
% (2𝜋)&"/!exp − "

!
𝑧! 𝑑𝑧

= 1 − Φ((&)
$
)

𝐸 𝑋 𝑋 > 𝑎 =
-. !()

& /0(2$3 !()
& )

2$3(!()& )
=

-.(!()& )

2$3(!()& )
+ µ

9



• The conditional expectation of 𝑢!
𝐸 𝑢! 𝑋!𝛽 + 𝑢! > 𝑎 = ∫'$5*6

% 𝑢!
7(8*)

2$9('$5*6)
𝑑𝑢!

=∫'$5*6
% 8*

-

.(+*& )

2$3(!('*,& )
𝑑𝑢!

=
-.(!('*,& )

2$3(!('*,& )

• The conditional expectation of 𝑦!
𝐸(𝑦!|𝑦! > 𝑎) = 𝐸(𝑋!𝛽 + 𝑢!| 𝑋!𝛽 + 𝑢! > 𝑎)

= 𝑋!𝛽 + 𝐸 𝑢! 𝑋!𝛽 + 𝑢! > 𝑎

= 𝑋!𝛽 +
-.(!(-*,& )

2$3(!(-*,& )
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• Tℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑜𝑓 𝑀𝐿𝐸

𝐿 𝛽, 𝜎# =;
+,%

-
𝑓(𝑦+ − 𝑋+𝛽)

1 − 𝐹(𝑎 − 𝑋+𝛽)
=;

+,%

-
1
𝜎

𝜙(𝑦+ − 𝑋+𝛽𝜎 )

1 − Φ(𝑎 − 𝑋+𝛽𝜎 )

• When we use the OLS method, we get a biased estimator.

𝐸[𝛽./0|𝑦+ > 𝑎] = ∑+,%- 𝑋+𝑋′+ $%∑+,%- 𝑋+𝐸[𝑦+|𝑦+ > 𝑎]

= ∑+,%- 𝑋+𝑋′+ $%∑+,%- 𝑋+ 𝑋+𝛽 + 𝜎
1(

!"'()
$ )

%$2(
!"'()

$ )

= 𝛽 + 𝜎 ∑+,%- 𝑋+𝑋′+ $% ∑+,%- 𝑋+
1(

!"'()
$ )

%$2(
!"'()

$ )
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1.2Censored Regression Model or Tobit Model

Unlike in truncated model, there is no truncation here. The feature that distinguishes 
the censored regression model from usual regression model is that the dependent 
variable is censored.

𝑦A∗ = 𝑋A𝛽 + 𝑢A， 𝑢A｜𝑋A ~𝑁(0, 𝜎C)

𝑦A = ;
𝑦A∗ 𝑖𝑓 𝑦A∗ ≥ 0
0 𝑖𝑓 𝑦A∗ < 0
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𝑃 𝑦! = 0 𝑋! = 𝑃 𝑦!∗ < 0 𝑋! = 𝑃 𝑋!𝛽 + 𝑢! < 0 𝑋!
= 𝑃 𝑢! < −𝑋!𝛽 𝑋!
= 𝑃(8*

-
< − 5*6

-
|𝑋!)

= Φ(− 5*6
- )

= 1 − Φ 5*6
-

𝑃 𝑦! = 𝑋!𝛽 + 𝑢! 𝑋! = 𝑃 𝑢! = 𝑦! − 𝑋!𝛽 𝑋!
= 2

-
𝜙(:*$5*6

-
)

• Maximize the log-likelihood function to calculate 𝛽 and 𝜎#.

𝑙𝑜𝑔𝐿! = 𝟏 𝑦! = 0 log 1 − Φ(
𝑋!𝛽
𝜎
) + 𝟏 𝑦! > 0 log[

1
𝜎
𝜙(
𝑦! − 𝑋!𝛽

𝜎
)]
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2.Count Data Model (計数データモデル)

• Poisson distribution:

𝑃 𝑋 = 𝑥 = 𝑓 𝑥 =
𝑒$;𝜆&

𝑥!
, 𝑓𝑜𝑟 𝑥 = 0,1,2, …

• The expectation of X:

𝐸 𝑋 = G
3,4

"

𝑥
𝑒$5𝜆3

𝑥! = G
3,%

"

𝑥
𝑒$5𝜆3

𝑥! = G
3,%

"

𝜆
𝑒$5𝜆3$%

𝑥 − 1 ! = 𝜆 G
3*,4

"
𝑒$5𝜆36

𝑥6! = 𝜆

Note:∑%+,' -#&.'

%!
= 1.
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• Poisson count data model

Let 𝑦! ∈ 0,1,2, … (discrete numbers) and 𝑦!~Poi λ . Poisson count data model is 
represented as

𝐸 𝑦A = 𝜆A = exp(𝑋A𝛽)
Where 𝜆! > 0, it is better to avoid the specification:𝜆 = 𝑋!𝛽.

The joint distribution is:

𝑓(𝑦E, 𝑦C ,…, 𝑦F )=∏AGE
F 𝑓(𝑦A) = ∏AGE

F H!"#I#
$#

J#!
= 𝐿(𝛽)
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• The log-likelihood function is:

𝑙𝑜𝑔𝐿 𝛽 = −Q
0+"

1

𝜆0 +Q
0+"

1

𝑦0𝑙𝑜𝑔𝜆0 −Q
0+"

1

𝑙𝑜𝑔𝑦0!

= −Q
0+"

1

exp(𝑋0𝛽) +Q
0+"

1

𝑦0𝑋0𝛽 −Q
0+"

1

𝑙𝑜𝑔𝑦0!

• The first-order condition is:

𝜕𝑙𝑜𝑔𝐿(𝛽)
𝜕𝛽

= −Q
0+"

1

𝑋′0exp(𝑋0𝛽) +Q
0+"

1

𝑋′0𝑦0 = 0
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• By the newton-Raphson method

𝛽(</2) = 𝛽(<) −
𝜕#𝑙𝑜𝑔𝐿(𝛽(<))

𝜕𝛽𝜕𝛽′

$2 𝜕𝑙𝑜𝑔𝐿(𝛽(<))
𝜕𝛽

Finally, we get

𝛽(</2) = 𝛽(<) − −S
!=2

>

𝑋′!𝑋!exp(𝑋!𝛽(<))
$2

−S
!=2

>

𝑋?! exp 𝑋!𝛽 < +S
!=2

>

𝑋′!𝑦!
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2.1 Zero-Inflated Poisson Count Data Model

• Dependent variable counts rare event and contains too much zeros.
We assume that the probability of 𝑦! = 𝑗 is decomposed of two regimes, then we 

have 𝑦! = 𝑗 and Regime 1(R1), 𝑦! = 𝑗 and Regime2(R2).
𝑃 𝑦! = 0 and 𝑃 𝑦! = 𝑗 separately as follows:

𝑃 𝑦! = 0 = 𝑃 𝑦! = 0 𝑅1 𝑃 𝑅1 + 𝑃 𝑦! = 0 𝑅2 𝑃(𝑅2)

𝑃 𝑦! = 𝑗 = 𝑃 𝑦! = 𝑗 𝑅1 𝑃 𝑅1 + 𝑃 𝑦! = 𝑗 𝑅2 𝑃(𝑅2)
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Assumption:
• 𝑃 𝑦! = 0 R1 = 1 and P 𝑦! = j R1 = 0 for j = 1,2… ,
• 𝜆! = exp(𝑋!𝛽)
• 𝑃 𝑅1 = 𝐹 𝑧!𝛼
• 𝑃 𝑅2 = 1 − 𝐹 𝑧!𝛼

• 𝑃 𝑦! = 𝑗|R2 = @(.*;*
/*

:*!

Based on assumptions, we get:

𝑃 𝑦A = 𝑗 = 𝑃 𝑅1 𝐼A + 𝑃 𝑦A = 𝑗 𝑅C 𝑃(𝑅C)

𝑃 𝑦A = 𝑗 = 𝐹 𝑧A𝛼 𝐼A +
H!"#I#

$#

J#!
(1 − 𝐹 𝑧A𝛼 )
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• Maximize the log-likelihood function to calculate 𝛼 and 𝛽.

𝑙𝑜𝑔𝐿 𝛼, 𝛽 =S
!=2

>

𝑙𝑜𝑔𝑃(𝑦! = j) =S
!=2

>

𝑙𝑜𝑔 𝐹 𝑧!𝛼 𝐼! +
𝑒$;*𝜆!

:*

𝑦!!
(1 − 𝐹 𝑧!𝛼 )
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3.GLS-Review

• GLS Regression model

𝑦 = 𝑋𝛽 + 𝑢 𝑢~𝑁 0, 𝜎#Ω ,Ω 𝑖𝑠 𝑛×𝑛
min(𝑦 − 𝑋𝛽)′Ω$2(𝑦 − 𝑋𝛽)

𝛽

• GLS estimator of 𝛽 is given by

𝑏 = (𝑋?Ω$2𝑋)$2𝑋?Ω$2𝑦 = 𝛽 + (𝑋?Ω$2𝑋)$2𝑋?Ω$2𝑢
𝐸(𝑏) = 𝛽,𝑉(𝑏) = 𝜎#(𝑋?Ω$2𝑋)$2
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• We apply OLS to the regression model, we get the estimator of 𝛽.

𝑦 = 𝑋𝛽 + 𝑢, 𝑢~𝑁(0, 𝜎#Ω)

W𝛽 = (𝑋2𝑋)&"𝑋2𝑦 = 𝛽 + (𝑋2𝑋)&"𝑋2𝑢
𝐸( W𝛽) = 𝛽,    𝑉( W𝛽) = 𝜎!(𝑋2𝑋)&" 𝑋2Ω𝑋 𝑋2𝑋 &"

• The difference between two variance is:
𝑉 W𝛽 − 𝑉 𝑏 = 𝜎!(𝑋2𝑋)&" 𝑋2Ω𝑋 𝑋2𝑋 &"- 𝜎!(𝑋2Ω&"𝑋)&"

= 𝜎! (𝑋2𝑋)&"𝑋2 − 𝑋2Ω&"𝑋 &"𝑋′Ω&" Ω (𝑋2𝑋)&"𝑋2 − 𝑋2Ω&"𝑋 &"𝑋′Ω&" 2

=𝜎!𝐴Ω𝐴′>0

b is more efficient than "𝛽.
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