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1.Limited Dependent Variable Model (F|f[REB L £ E7 L)

* Buying a Car
Vi = xif +u;
yi: expenditure for a car,x; : income, price of the car...

* Working-hours of Wife
vi =xif+u

y;: represents working — hours of wife,
x; : the number of children, age, education, income of husband ...



1.1 Truncated Regression Model

*yi =Xif +w, u~N(0,0?) |
when y; > a,where a is a constant,i = 1,2, ...,n.

» Consider the case of y; > a,(when y; < a,y; is not observed),

u
suppose: u; ~ N(0,0%) = ;l ~ N(0,1)

* EQuily; > a) = Eui|X;f +u; > a) =7
E(ilyi > a) =EQilXiB +u; >a) =7
the estimator of MLE =?



Review: truncated normal distribution

* Probability density function of normal distribution
X ~N(u,0o?)
(x — pw)?

exp(—
\V2mo? 202

fx) = )

* Probability density function and cumulative distribution function of standard

normal distribution
X~N(0,1)

1 x4
d(x) = \/T_neXp <— 7)

X 1 2 X
d(x) =j Tﬂexp (—%) dz=f d(z)dz



* f(x) and F(x) are given by:
X ~ N(0, %)
—exp(—5%5) = 29O,

X 1 2
F(x) = f_ exp <— %) dz = Clb(g)

2102

f&) = =

* Definition of a truncated normal distribution

X ~N(u, 02),X1> a

(x — p)*
exp(— )
e > a) = o D= Vel BT




e Mean of truncated normal distribut}oon
EX|X >a) = j xf(x|x > a)dx

a

00 1 _(x—u)2
B fa X — exp( — )dx
T o0 1 _(x—p)?

Iq \/mexp< — )dx




 Transformation of numerators and denominators

1 (x — p)? ;
*Vzmoz P 2072 *

fa u(oz + pn)(2m) "2 exp(——z )dz

o &Z(Zﬂ)‘l/zexp(—%zz)dz + uf&(ZTI)_l/ZeXp(—%ZZ)dZ

— foo (2m)~Y2exp(—t) dt + u (1 —d (a — .U))
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«© 1 *© 1
L (2na?)~2exp (—T‘Z (x — ,u)2> dx = fu(Zn)‘l/Zexp(—Ezz) dz
o

a—p

=1— [ (2m) Y 2exp (— %Zz) dz

=1-o(=")

S(EE)+ua-o(=E)  opEh

o
E(X|X > a)= P

Tl



* The conditional expectation of u;
E(ui|XiB +u; > a) = faoo_xiﬁ U 1_F]Z£lu_iz(iﬁ) du;
oy $CE
a—Xif o 1_¢(#)
(i

—_— o

i YL

dui

* The conditional expectation of y;

E(yily; >a) =EX;f +u;| X;f +u; > a)
= X;B + E(w;|X;B +u; > a)

a—-X;p

o (XiE

— Xlﬁ + ]_—CI)(a_XiB

o
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* The estimator of MLE

n n i — XiP
T foi—xp) Tyl ¢S

= =1

o a—Xif
1 — o(=—-15)
* When we use the OLS method, we get a biased estimator.

E[Boisly: > al = Q1 XiX') ™ Ximi XiE[yily; > al
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1.2Censored Regression Model or Tobit Model

Unlike 1n truncated model, there 1s no truncation here. The feature that distinguishes
the censored regression model from usual regression model 1s that the dependent
variable 1s censored.

yl* =Xl-,B+ul-, Uj |Xl NN(O,O'Z)

r X L k
)i if yi 20
YiTlo ifyr<o0

\




P(y; = 01X;) = P(y; <0]X;) = P(X;f +u; <0[X;)
=P(y; < —X,3|X)
—P(—<——|X)
_ o Xib

1o
P(y; = XiB +uilX;) = P(u; = y; — X;BlX;)
_ %(P(yi_gxiﬁ)

 Maximize the log-likelihood function to calculate 8 and o2.

X, 1y, —X;
logL = 1y, = 0)log[1 ~ @) + 10, > Ologl= o C—0)



2.Count Data Model (5128075 —4% &5 /L)

e Poisson distribution:

e X
PX=x)=f(x) = I forx=0,1,2,..

* The expectation of X:

0 -A1x
e A
E(X) = 2 x
x=0 '

co

®© —A/lx —A)Lx—l e Q_Aﬂ.x’
Z Z x—1)!=AZ X'l

X

—-Ayx
e~ A
Note:) 5=o =1




e Poisson count data model

Let y; € {0,1,2, ... } (discrete numbers) and y; ~Poi(A). Poisson count data model is
represented as

E(y;) = A; = exp(X;f)
Where A; > 0, 1t is better to avoid the specification:A = X;[.

The joint distribution is:

fO1 ¥z v v )=z fO) = Tliza—— = L(B)




* The log-likelihood function is:

n n n
logL(B) = — Z Ai + Z yilogh; — Z logy;!
=1 =1 =1
n
= —ZeXp(X B) +2y1Xﬁ Zlogyl

=1 =1

e The first-order condition is:

e D Z X' iexp(Xif) + Z Xy =0




* By the newton-Raphson method

,B(j“) _ lg(j) B azlogL(ﬁ(f)) - alogL(,B(j))
- 0BIf’ Y

Finally, we get

-1 n

pUTD = pU) — <— X'iXieXP(Xiﬁ(j))> (‘ X';exp(X;890) + X'i)’i)
2 2 2

=1



2.1 Zero-Inflated Poisson Count Data Model

* Dependent variable counts rare event and contains too much zeros.

We assume that the probability of y; = j 1s decomposed of two regimes, then we
have y; = j and Regime 1(R1), y; = j and Regime2(R2).

P(y; = 0) and P(y; = j) separately as follows:

P(y; = 0) = P(y; = 0|R1)P(R1) + P(y; = 0|R2)P(R2)

P(y; =j) = P(y; = JIR1P(R1) + P(y; = j|IR2)P(R2)



Assumption:

* P(y; = 0|R1) = 1and P(y; = j|R1) = O forj = 1,2 ...,
* A = exp(X;f)

+ P(R1) = F(z;q)

« P(R2) =1-F(z;a)

Py = jIR2) = £

Based on assumptions, we get:

P(y; =j) = P(R1)I; + P(y; = jIR;)P(Ry)
_Aiﬂ'yi

P(y; =j) = F(z;a) I; + - o (1= F(za))




* Maximize the log-likelihood function to calculate a and £.

—/‘liﬂ_yi

logL(a,B) = 2 logP(y; =j) = 2 log (F(Zia) [; + — (1-F(za)) )
i=1 =1

;!



3.GLS-Review

* GLS Regression model

y=XB+u u~N(0,0%Q), Qis nXn
min(y — XB)' Q71 (y — Xp)
B

e GLS estimator of f 1s given by

b=Xo X)) X0 ly=p+ X' Q0 1X)1X'0tu
E(b) =BV =c?(X'Q X))



* We apply OLS to the regression model, we get the estimator of (5.
y =XB +u, u~N(0,0%0)

X'X) X'y =B+ X'X)1X'u

g =
=B, VB =c?X'X) X' ax(X'x)?

E(B)

* The difference between two variance 1s:

V(B)—V() =c?2X' X)L X' QX(X'X)1- o2(X'Q71X)7?
=02 ((X'X)7X' — (X' X)X’ X)X — (x'Q"1x)"1x'a"1)
=0?A0A">0

b is more efficient than .



