and $\left(\frac{1}{n} \frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)^{-1}\left(\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)$ has the same asymptotic distribu－ tion as $\Sigma^{-1}\left(\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)$ ．

11．Optimization（最適化）：

MLE of θ results in the following maximization problem：

$$
\max _{\theta} \log L(\theta ; x)
$$

We often have the case where the solution of θ is not derived in closed form．
\Longrightarrow Optimization procedure

$$
0=\frac{\partial \log L(\theta ; x)}{\partial \theta}=\frac{\partial \log L\left(\theta^{*} ; x\right)}{\partial \theta}+\frac{\partial^{2} \log L\left(\theta^{*} ; x\right)}{\partial \theta \partial \theta^{\prime}}\left(\theta-\theta^{*}\right) .
$$

Solving the above equation with respect to θ ，we obtain the following：

$$
\theta=\theta^{*}-\left(\frac{\partial^{2} \log L\left(\theta^{*} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)^{-1} \frac{\partial \log L\left(\theta^{*} ; x\right)}{\partial \theta}
$$

Replace the variables as follows：

$$
\theta \longrightarrow \theta^{(i+1)}, \quad \theta^{*} \longrightarrow \theta^{(i)}
$$

Then，we have：

$$
\theta^{(i+1)}=\theta^{(i)}-\left(\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)^{-1} \frac{\partial \log L\left(\theta^{(i)} ; x\right)}{\partial \theta} .
$$

\Longrightarrow Newton－Raphson method（ニュートン・ラプソン法）
Replacing $\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}$ by $\mathrm{E}\left(\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)$ ，we obtain the following op－ timization algorithm：

$$
\begin{aligned}
\theta^{(i+1)} & =\theta^{(i)}-\left(\mathrm{E}\left(\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)\right)^{-1} \frac{\partial \log L\left(\theta^{(i)} ; x\right)}{\partial \theta} \\
& =\theta^{(i)}+\left(I\left(\theta^{(i)}\right)\right)^{-1} \frac{\partial \log L\left(\theta^{(i)} ; x\right)}{\partial \theta}
\end{aligned}
$$

\Longrightarrow Method of Scoring（スコア法）

2 Qualitative Dependent Variable（質的従属変数）

1．Discrete Choice Model（離散選択モデル）

2．Limited Dependent Variable Model（制限従属変数モデル）
3．Count Data Model（計数データモデル）

Usually，the regression model is given by：

$$
y_{i}=X_{i} \beta+u_{i}, \quad u_{i} \sim N\left(0, \sigma^{2}\right), \quad i=1,2, \cdots, n,
$$

where y_{i} is a continuous type of random variable within the interval from $-\infty$ to ∞ ．

When y_{i} is discrete or truncated，what happens？

2．1 Discrete Choice Model（離散選択モデル）

2．1．1 Binary Choice Model（二値選択モデル）

Example 1：Consider the regression model：

$$
y_{i}^{*}=X_{i} \beta+u_{i}, \quad u_{i} \sim\left(0, \sigma^{2}\right), \quad i=1,2, \cdots, n,
$$

where y_{i}^{*} is unobserved，but y_{i} is observed as 0 or 1，i．e．，

$$
y_{i}= \begin{cases}1, & \text { if } y_{i}^{*}>0 \\ 0, & \text { if } y_{i}^{*} \leq 0\end{cases}
$$

Consider the probability that y_{i} takes 1 ，i．e．，

$$
\begin{aligned}
P\left(y_{i}=1\right) & =P\left(y_{i}^{*}>0\right)=P\left(u_{i}>-X_{i} \beta\right)=P\left(u_{i}^{*}>-X_{i} \beta^{*}\right)=1-P\left(u_{i}^{*} \leq-X_{i} \beta^{*}\right) \\
& =1-F\left(-X_{i} \beta^{*}\right)=F\left(X_{i} \beta^{*}\right), \quad\left(\text { if the dist. of } u_{i}^{*} \text { is symmetric. }\right),
\end{aligned}
$$

where $u_{i}^{*}=\frac{u_{i}}{\sigma}$, and $\beta^{*}=\frac{\beta}{\sigma}$ are defined.
${ }^{*}$) β^{*} can be estimated, but β and σ^{2} cannot be estimated separately (i.e., β and σ^{2} are not identified).

The distribution function of u_{i}^{*} is given by $F(x)=\int_{-\infty}^{x} f(z) \mathrm{d} z$.
If u_{i}^{*} is standard normal, i.e., $u_{i}^{*} \sim N(0,1)$, we call probit model.

$$
F(x)=\int_{-\infty}^{x}(2 \pi)^{-1 / 2} \exp \left(-\frac{1}{2} z^{2}\right) \mathrm{d} z, \quad f(x)=(2 \pi)^{-1 / 2} \exp \left(-\frac{1}{2} x^{2}\right)
$$

If u_{i}^{*} is logistic, we call logit model.

$$
F(x)=\frac{1}{1+\exp (-x)}, \quad f(x)=\frac{\exp (-x)}{(1+\exp (-x))^{2}}
$$

We can consider the other distribution function for u_{i}^{*}.

Likelihood Function：$\quad y_{i}$ is the following Bernoulli distribution：

$$
f\left(y_{i}\right)=\left(P\left(y_{i}=1\right)\right)^{y_{i}}\left(P\left(y_{i}=0\right)\right)^{1-y_{i}}=\left(F\left(X_{i} \beta^{*}\right)\right)^{y_{i}}\left(1-F\left(X_{i} \beta^{*}\right)\right)^{1-y_{i}}, \quad y_{i}=0,1 .
$$

［Review — Bernoulli Distribution（ベルヌイ 分布）］

Suppose that X is a Bernoulli random variable．the distribution of X ，denoted by $f(x)$ ， is：

$$
f(x)=p^{x}(1-p)^{1-x}, \quad x=0,1
$$

The mean and variance are：
$\mu=\mathrm{E}(X)=\sum_{x=0}^{1} x f(x)=0 \times(1-p)+1 \times p=p$,
$\sigma^{2}=\mathrm{V}(X)=\mathrm{E}\left((X-\mu)^{2}\right)=\sum_{x=0}^{1}(x-\mu)^{2} f(x)=(0-p)^{2}(1-p)+(1-p)^{2} p=p(1-p)$.
［End of Review］

The likelihood function is given by:

$$
L\left(\beta^{*}\right)=f\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\prod_{i=1}^{n} f\left(y_{i}\right)=\prod_{i=1}^{n}\left(F\left(X_{i} \beta^{*}\right)\right)^{y_{i}}\left(1-F\left(X_{i} \beta^{*}\right)\right)^{1-y_{i}},
$$

The log-likelihood function is:

$$
\log L\left(\beta^{*}\right)=\sum_{i=1}^{n}\left(y_{i} \log F\left(X_{i} \beta^{*}\right)+\left(1-y_{i}\right) \log \left(1-F\left(X_{i} \beta^{*}\right)\right)\right)
$$

Solving the maximization problem of $\log L\left(\beta^{*}\right)$ with respect to β^{*}, the first order condition is:

$$
\begin{aligned}
\frac{\partial \log L\left(\beta^{*}\right)}{\partial \beta^{*}} & =\sum_{i=1}^{n}\left(\frac{y_{i} X_{i}^{\prime} f\left(X_{i} \beta^{*}\right)}{F\left(X_{i} \beta^{*}\right)}-\frac{\left(1-y_{i}\right) X_{i}^{\prime} f\left(X_{i} \beta^{*}\right)}{1-F\left(X_{i} \beta^{*}\right)}\right) \\
& =\sum_{i=1}^{n} \frac{X_{i}^{\prime} f\left(X_{i} \beta^{*}\right)\left(y_{i}-F\left(X_{i} \beta^{*}\right)\right)}{F\left(X_{i} \beta^{*}\right)\left(1-F\left(X_{i} \beta^{*}\right)\right)}=\sum_{i=1}^{n} \frac{X_{i}^{\prime} f_{i}\left(y_{i}-F_{i}\right)}{F_{i}\left(1-F_{i}\right)}=0,
\end{aligned}
$$

where $f_{i} \equiv f\left(X_{i} \beta^{*}\right)$ and $F_{i} \equiv F\left(X_{i} \beta^{*}\right) . \quad$ Remember that $f(x) \equiv \frac{\mathrm{d} F(x)}{\mathrm{d} x}$.

The second order condition is:

$$
\begin{aligned}
\frac{\partial^{2} \log L\left(\beta^{*}\right)}{\partial \beta^{*} \partial \beta^{* \prime}}=\sum_{i=1}^{n} \frac{X_{i}^{\prime} \frac{\partial f_{i}}{\partial \beta^{*}}\left(y_{i}-F_{i}\right)}{F_{i}\left(1-F_{i}\right)} & +\sum_{i=1}^{n} \frac{X_{i}^{\prime} f_{i} \frac{\partial\left(f_{i}-F_{i}\right)}{\partial \beta^{*}}}{F_{i}\left(1-F_{i}\right)} \\
& +\sum_{i=1}^{n} X_{i}^{\prime} f_{i}\left(y_{i}-F_{i}\right) \frac{\partial\left(F_{i}\left(1-F_{i}\right)\right)^{-1}}{\partial \beta^{*}} \\
= & \sum_{i=1}^{n} \frac{X_{i}^{\prime} X_{i} f_{i}^{\prime}\left(y_{i}-F_{i}\right)}{F_{i}\left(1-F_{i}\right)}-\sum_{i=1}^{n} \frac{X_{i}^{\prime} X_{i} f_{i}^{2}}{F_{i}\left(1-F_{i}\right)}+\sum_{i=1}^{n} X_{i}^{\prime} f_{i}\left(y_{i}-F_{i}\right) \frac{X_{i} f_{i}\left(1-2 F_{i}\right)}{\left(F_{i}\left(1-F_{i}\right)\right)^{2}}
\end{aligned}
$$

is a negative definite matrix.

For maximization, the method of scoring is given by:

$$
\begin{aligned}
\beta^{*(j+1)} & =\beta^{*(j)}+\left(-\mathrm{E}\left(\frac{\partial^{2} \log L\left(\beta^{*(j)}\right)}{\partial \beta^{*} \partial \beta^{* \prime}}\right)\right)^{-1} \frac{\partial \log L\left(\beta^{*(j)}\right)}{\partial \beta^{*}} \\
& =\beta^{*(j)}+\left(\sum_{i=1}^{n} \frac{X_{i}^{\prime} X_{i}\left(f_{i}^{(j)}\right)^{2}}{F_{i}^{(j)}\left(1-F_{i}^{(j)}\right)}\right)^{-1} \sum_{i=1}^{n} \frac{X_{i}^{\prime} f_{i}^{(j)}\left(y_{i}-F_{i}^{(j)}\right)}{F_{i}^{(j)}\left(1-F_{i}^{(j)}\right)},
\end{aligned}
$$

where $F_{i}^{(j)}=F\left(X_{i} \beta^{*(j)}\right)$ and $f_{i}^{(j)}=f\left(X_{i} \beta^{*(j)}\right)$. Note that

$$
I\left(\beta^{*}\right)=-\mathrm{E}\left(\frac{\partial^{2} \log L\left(\beta^{*}\right)}{\partial \beta^{*} \partial \beta^{* \prime}}\right)=\sum_{i=1}^{n} \frac{X_{i}^{\prime} X_{i} f_{i}^{2}}{F_{i}\left(1-F_{i}\right)} .
$$

because of $\mathrm{E}\left(y_{i}\right)=F_{i}$.
It is known that

$$
\sqrt{n}\left(\hat{\beta}^{*}-\beta^{*}\right) \longrightarrow N\left(0, \lim _{n \rightarrow \infty}\left(-\frac{1}{n} \mathrm{E}\left(\frac{\partial^{2} \log L\left(\beta^{*}\right)}{\partial \beta^{*} \partial \beta^{* \prime}}\right)\right)^{-1}\right)
$$

where $\hat{\beta}^{*} \equiv \lim _{j \rightarrow \infty} \beta^{*(j)}$ denotes MLE of β^{*}.
Practically, we use the following normal distribution:

$$
\hat{\beta}^{*} \sim N\left(\beta^{*}, I\left(\hat{\beta}^{*}\right)^{-1}\right),
$$

where $I\left(\hat{\beta}^{*}\right)=-\mathrm{E}\left(\frac{\partial^{2} \log L\left(\hat{\beta}^{*}\right)}{\partial \beta^{*} \partial \beta^{* \prime}}\right)=\sum_{i=1}^{n} \frac{X_{i}^{\prime} X_{i} \hat{f}_{i}^{2}}{\hat{F}_{i}\left(1-\hat{F}_{i}\right)}, \hat{f}_{i}=f\left(X_{i} \hat{\beta}^{*}\right)$ and $\hat{F}_{i}=F\left(X_{i} \hat{\beta}^{*}\right)$.
Thus, the significance test for β^{*} and the confidence interval for β^{*} can be constructed.

Another Interpretation: This maximization problem is equivalent to the nonlinear least squares estimation problem from the following regression model:

$$
y_{i}=F\left(X_{i} \beta^{*}\right)+u_{i},
$$

where $u_{i}=y_{i}-F_{i}$ takes $u_{i}=1-F_{i}$ with probability $P\left(y_{i}=1\right)=F\left(X_{i} \beta^{*}\right)=F_{i}$ and $u_{i}=-F_{i}$ with probability $P\left(y_{i}=0\right)=1-F\left(X_{i} \beta^{*}\right)=1-F_{i}$.

Therefore, the mean and variance of u_{i} are:

$$
\begin{aligned}
& \mathrm{E}\left(u_{i}\right)=\left(1-F_{i}\right) F_{i}+\left(-F_{i}\right)\left(1-F_{i}\right)=0, \\
& \sigma_{i}^{2}=\mathrm{V}\left(u_{i}\right)=\mathrm{E}\left(u_{i}^{2}\right)-\left(\mathrm{E}\left(u_{i}\right)\right)^{2}=\left(1-F_{i}\right)^{2} F_{i}+\left(-F_{i}\right)^{2}\left(1-F_{i}\right)=F_{i}\left(1-F_{i}\right)
\end{aligned}
$$

The weighted least squares method solves the following minimization problem:

$$
\min _{\beta^{*}} \sum_{i=1}^{n} \frac{\left(y_{i}-F\left(X_{i} \beta^{*}\right)\right)^{2}}{\sigma_{i}^{2}}
$$

The first order condition is:

$$
\sum_{i=1}^{n} \frac{X_{i}^{\prime} f\left(X_{i} \beta^{*}\right)\left(y_{i}-F\left(X_{i} \beta^{*}\right)\right)}{\sigma_{i}^{2}}=\sum_{i=1}^{n} \frac{X_{i}^{\prime} f_{i}\left(y_{i}-F_{i}\right)}{F_{i}\left(1-F_{i}\right)}=0,
$$

which is equivalent to the first order condition of MLE.

Thus, the binary choice model is interpreted as the nonlinear least squares.

Prediction: $\mathrm{E}\left(y_{i}\right)=0 \times\left(1-F_{i}\right)+1 \times F_{i}=F_{i} \equiv F\left(X_{i} \beta^{*}\right)$.

Example 2: Consider the two utility functions: $U_{1 i}=X_{i} \beta_{1}+\epsilon_{1 i}$ and $U_{2 i}=X_{i} \beta_{2}+\epsilon_{2 i}$.
A linear utility function is problematic, but we consider the linear function for simplicity of discussion.
We purchase a good when $U_{1 i}>U_{2 i}$ and do not purchase it when $U_{1 i}<U_{2 i}$.
We can observe $y_{i}=1$ when we purchase the good, i.e., when $U_{1 i}>U_{2 i}$, and $y_{i}=0$ otherwise.

$$
\begin{aligned}
P\left(y_{i}=1\right) & =P\left(U_{1 i}>U_{2 i}\right)=P\left(X_{i}\left(\beta_{1}-\beta_{2}\right)>-\epsilon_{1 i}+\epsilon_{2 i}\right) \\
& =P\left(-X_{i} \beta^{*}<\epsilon_{i}^{*}\right)=P\left(-X_{i} \beta^{* *}<\epsilon_{i}^{* *}\right)=1-F\left(-X_{i} \beta^{* *}\right)=F\left(X_{i} \beta^{* *}\right)
\end{aligned}
$$

where $\beta^{*}=\beta_{1}-\beta_{2}, \quad \epsilon_{i}^{*}=\epsilon_{1 i}-\epsilon_{2 i}, \quad \beta^{* *}=\frac{\beta^{*}}{\sigma^{*}} \quad$ and $\quad \epsilon_{i}^{* *}=\frac{\epsilon_{i}^{*}}{\sigma^{*}}$.
We can estimate $\beta^{* *}$, but we cannot estimate ϵ_{i}^{*} and σ^{*}, separately.
Mean and variance of $\epsilon_{i}^{* *}$ are normalized to be zero and one, respectively.
If the distribution of $\epsilon_{i}^{* *}$ is symmetric, the last equality holds.

We can estimate $\beta^{* *}$ by MLE as in Example 1.

Example 3: Consider the questionnaire:

$$
y_{i}= \begin{cases}1, & \text { if the } i \text { th person answers YES } \\ 0, & \text { if the } i \text { th person answers NO }\end{cases}
$$

Consider estimating the following linear regression model:

$$
y_{i}=X_{i} \beta+u_{i} .
$$

When $\mathrm{E}\left(u_{i}\right)=0$, the expectation of y_{i} is given by:

$$
\mathrm{E}\left(y_{i}\right)=X_{i} \beta
$$

Because of the linear function, $X_{i} \beta$ takes the value from $-\infty$ to ∞.

However, $\mathrm{E}\left(y_{i}\right)$ indicates the ratio of the people who answer YES out of all the people, because of $\mathrm{E}\left(y_{i}\right)=1 \times P\left(y_{i}=1\right)+0 \times P\left(y_{i}=0\right)=P\left(y_{i}=1\right)$.

That is, $\mathrm{E}\left(y_{i}\right)$ has to be between zero and one.
Therefore, it is not appropriate that $\mathrm{E}\left(y_{i}\right)$ is approximated as $X_{i} \beta$.

The model is written as:

$$
y_{i}=P\left(y_{i}=1\right)+u_{i},
$$

where u_{i} is a discrete type of random variable, i.e., u_{i} takes $1-P\left(y_{i}=1\right)$ with probability $P\left(y_{i}=1\right)$ and $-P\left(y_{i}=1\right)$ with probability $1-P\left(y_{i}=1\right)=P\left(y_{i}=0\right)$.

Consider that $P\left(y_{i}=1\right)$ is connected with the distribution function $F\left(X_{i} \beta\right)$ as follows:

$$
P\left(y_{i}=1\right)=F\left(X_{i} \beta\right)
$$

where $F(\cdot)$ denotes a distribution function such as normal dist., logistic dist., and so on. $\quad \longrightarrow$ probit model or logit model.

The probability function of y_{i} is:

$$
f\left(y_{i}\right)=F\left(X_{i} \beta\right)^{y_{i}}\left(1-F\left(X_{i} \beta\right)\right)^{1-y_{i}} \equiv F_{i}^{y_{i}}\left(1-F_{i}\right)^{1-y_{i}}, \quad y_{i}=0,1
$$

The joint distribution of $y_{1}, y_{2}, \cdots, y_{n}$ is:

$$
f\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\prod_{i=1}^{n} f\left(y_{i}\right)=\prod_{i=1}^{n} F_{i}^{y_{i}}\left(1-F_{i}\right)^{1-y_{i}} \equiv L(\beta)
$$

which corresponds to the likelihood function. \longrightarrow MLE

Example 4: Ordered probit or logit model:
Consider the regression model:

$$
y_{i}^{*}=X_{i} \beta+u_{i}, \quad u_{i} \sim(0,1), \quad i=1,2, \cdots, n,
$$

where y_{i}^{*} is unobserved, but y_{i} is observed as $1,2, \cdots, m$, i.e.,

$$
y_{i}= \begin{cases}1, & \text { if }-\infty<y_{i}^{*} \leq a_{1} \\ 2, & \text { if } a_{1}<y_{i}^{*} \leq a_{2} \\ \vdots, & \\ m, & \text { if } a_{m-1}<y_{i}^{*}<\infty\end{cases}
$$

where $a_{1}, a_{2}, \cdots, a_{m-1}$ are assumed to be known.

Consider the probability that y_{i} takes $1,2, \cdots, m$, i.e.,

$$
\begin{aligned}
P\left(y_{i}=1\right) & =P\left(y_{i}^{*} \leq a_{1}\right)=P\left(u_{i} \leq a_{1}-X_{i} \beta\right) \\
& =F\left(a_{1}-X_{i} \beta\right), \\
P\left(y_{i}=2\right) & =P\left(a_{1}<y_{i}^{*} \leq a_{2}\right)=P\left(a_{1}-X_{i} \beta<u_{i} \leq a_{2}-X_{i} \beta\right) \\
& =F\left(a_{2}-X_{i} \beta\right)-F\left(a_{1}-X_{i} \beta\right), \\
P\left(y_{i}=3\right) & =P\left(a_{2}<y_{i}^{*} \leq a_{3}\right)=P\left(a_{2}-X_{i} \beta<u_{i} \leq a_{3}-X_{i} \beta\right) \\
& =F\left(a_{3}-X_{i} \beta\right)-F\left(a_{2}-X_{i} \beta\right), \\
& \vdots \\
P\left(y_{i}=m\right) & =P\left(a_{m-1}<y_{i}^{*}\right)=P\left(a_{m-1}-X_{i} \beta<u_{i}\right) \\
& =1-F\left(a_{m-1}-X_{i} \beta\right) .
\end{aligned}
$$

Define the following indicator functions:

$$
I_{i 1}=\left\{\begin{array}{ll}
1, & \text { if } y_{i}=1, \\
0, & \text { otherwise. }
\end{array} \quad I_{i 2}=\left\{\begin{array}{ll}
1, & \text { if } y_{i}=2, \\
0, & \text { otherwise }
\end{array} \quad \cdots \quad I_{i m}= \begin{cases}1, & \text { if } y_{i}=m \\
0, & \text { otherwise }\end{cases}\right.\right.
$$

More compactly,

$$
P\left(y_{i}=j\right)=F\left(a_{j}-X_{i} \beta\right)-F\left(a_{j-1}-X_{i} \beta\right),
$$

for $j=1,2, \cdots, m$, where $a_{0}=-\infty$ and $a_{m}=\infty$.

$$
I_{i j}= \begin{cases}1, & \text { if } y_{i}=j \\ 0, & \text { otherwise }\end{cases}
$$

for $j=1,2, \cdots, m$.

Then, the likelihood function is:

$$
\begin{aligned}
L(\beta) & =\prod_{i=1}^{n}\left(F\left(a_{1}-X_{i} \beta\right)\right)^{I_{i 1}}\left(F\left(a_{2}-X_{i} \beta\right)-F\left(a_{1}-X_{i} \beta\right)\right)^{I_{i 2}} \cdots\left(1-F\left(a_{m-1}-X_{i} \beta\right)\right)^{I_{i m}} \\
& =\prod_{i=1}^{n} \prod_{j=1}^{m}\left(F\left(a_{j}-X_{i} \beta\right)-F\left(a_{j-1}-X_{i} \beta\right)\right)^{I_{i j}}
\end{aligned}
$$

where $a_{0}=-\infty$ and $a_{m}=\infty . \quad$ Remember that $F(-\infty)=0$ and $F(\infty)=1$.
The log-likelihood function is:

$$
\log L(\beta)=\sum_{i=1}^{n} \sum_{j=1}^{m} I_{i j} \log \left(F\left(a_{j}-X_{i} \beta\right)-F\left(a_{j-1}-X_{i} \beta\right)\right) .
$$

The first derivative of $\log L(\beta)$ with respect to β is:

$$
\frac{\partial \log L(\beta)}{\partial \beta}=\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{-I_{i j} X_{i}^{\prime}\left(f\left(a_{j}-X_{i} \beta\right)-f\left(a_{j-1}-X_{i} \beta\right)\right)}{F\left(a_{j}-X_{i} \beta\right)-F\left(a_{j-1}-X_{i} \beta\right)}=0 .
$$

Usually, normal distribution or logistic distribution is chosen for $F(\cdot)$.

Example 5: Multinomial logit model:
The i th individual has $m+1$ choices, i.e., $j=0,1, \cdots, m$.

$$
P\left(y_{i}=j\right)=\frac{\exp \left(X_{i} \beta_{j}\right)}{\sum_{j=0}^{m} \exp \left(X_{i} \beta_{j}\right)} \equiv P_{i j},
$$

for $\beta_{0}=0$. The case of $m=1$ corresponds to the bivariate logit model (binary choice).

Note that

$$
\log \frac{P_{i j}}{P_{i 0}}=X_{i} \beta_{j}
$$

The log-likelihood function is:

$$
\log L\left(\beta_{1}, \cdots, \beta_{m}\right)=\sum_{i=1}^{n} \sum_{j=0}^{m} d_{i j} \ln P_{i j},
$$

where $d_{i j}=1$ when the i th individual chooses j th choice, and $d_{i j}=0$ otherwise.

