Example 6: Nested logit model:
(i) In the 1st step, choose YES or NO. Each probability is P_{Y} and $P_{N}=1-P_{Y}$.
(ii) Stop if NO is chosen in the 1st step. Go to the next if YES is chosen in the 1st step.
(iii) In the 2nd step, choose A or B if YES is chosen in the 1st step. Each probability is $P_{A \mid Y}$ and $P_{B \mid Y}$.

For simplicity, usually we assume the logistic distribution.
So, we call the nested logit model.
The probability that the i th individual chooses NO is:

$$
P_{N, i}=\frac{1}{1+\exp \left(X_{i} \beta\right)} .
$$

The probability that the i th individual chooses YES and A is:

$$
P_{A \mid Y, i} P_{Y, i}=P_{A \mid Y, i}\left(1-P_{N, i}\right)=\frac{\exp \left(Z_{i} \alpha\right)}{1+\exp \left(Z_{i} \alpha\right)} \frac{\exp \left(X_{i} \beta\right)}{1+\exp \left(X_{i} \beta\right)}
$$

The probability that the i th individual chooses YES and B is:

$$
P_{B \mid Y, i} P_{Y, i}=\left(1-P_{A \mid Y, i}\right)\left(1-P_{N, i}\right)=\frac{1}{1+\exp \left(Z_{i} \alpha\right)} \frac{\exp \left(X_{i} \beta\right)}{1+\exp \left(X_{i} \beta\right)} .
$$

In the 1st step, decide if the i th individual buys a car or not.
In the 2nd step, choose A or B.
X_{i} includes annual income, distance from the nearest station, and so on.
Z_{i} are speed, fuel-efficiency, car company, color, and so on.

The likelihood function is:

$$
\begin{aligned}
L(\alpha, \beta) & =\prod_{i=1}^{n} P_{N, i}^{I_{1 i}}\left(\left(\left(1-P_{N, i}\right) P_{A \mid Y, i}\right)^{I_{2 i} i}\left(\left(1-P_{N, i}\right)\left(1-P_{A \mid Y, i}\right)\right)^{1-I_{2 i}}\right)^{1-I_{1 i}} \\
& =\prod_{i=1}^{n} P_{N, i}^{I_{1 i}}\left(1-P_{N, i}\right)^{1-I_{1 i}}\left(P_{A \mid Y, i}^{I_{2 i}}\left(1-P_{A \mid Y, i}\right)^{1-I_{2 i}}\right)^{1-I_{1 i}}
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{1 i}= \begin{cases}1, & \text { if the } i \text { th individual decides not to buy a car in the 1st step, } \\
0, & \text { if the } i \text { th individual decides to buy a car in the 1st step, }\end{cases} \\
& I_{2 i}= \begin{cases}1, & \text { if the } i \text { th individual chooses A in the } 2 \mathrm{nd} \text { step, } \\
0, & \text { if the } i \text { th individual chooses B in the } 2 \text { nd step, }\end{cases}
\end{aligned}
$$

Remember that $\mathrm{E}\left(y_{i}\right)=F\left(X_{i} \beta^{*}\right)$, where $\beta^{*}=\frac{\beta}{\sigma}$.
Therefore, size of β^{*} does not mean anything.

The marginal effect is given by:

$$
\frac{\partial \mathrm{E}\left(y_{i}\right)}{\partial X_{i}}=f\left(X_{i} \beta^{*}\right) \beta^{*}
$$

Thus, the marginal effect depends on the height of the density function $f\left(X_{i} \beta^{*}\right)$.

2．2 Limited Dependent Variable Model（制限従属変数モデル）

Truncated Regression Model：Consider the following model：

$$
y_{i}=X_{i} \beta+u_{i}, \quad u_{i} \sim N\left(0, \sigma^{2}\right) \text { when } y_{i}>a, \text { where } a \text { is a constant, }
$$

for $i=1,2, \cdots, n$ ．
Consider the case of $y_{i}>a$（i．e．，in the case of $y_{i} \leq a, y_{i}$ is not observed）．

$$
\mathrm{E}\left(u_{i} \mid X_{i} \beta+u_{i}>a\right)=\int_{a-X_{i} \beta}^{\infty} u_{i} \frac{f\left(u_{i}\right)}{1-F\left(a-X_{i} \beta\right)} \mathrm{d} u_{i} .
$$

Suppose that $u_{i} \sim N\left(0, \sigma^{2}\right)$ ，i．e．，$\frac{u_{i}}{\sigma} \sim N(0,1)$ ．
Using the following standard normal density and distribution functions：

$$
\begin{aligned}
& \phi(x)=(2 \pi)^{-1 / 2} \exp \left(-\frac{1}{2} x^{2}\right), \\
& \Phi(x)=\int_{-\infty}^{x}(2 \pi)^{-1 / 2} \exp \left(-\frac{1}{2} z^{2}\right) \mathrm{d} z=\int_{-\infty}^{x} \phi(z) \mathrm{d} z,
\end{aligned}
$$

$f(x)$ and $F(x)$ are given by:

$$
\begin{aligned}
& f(x)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-\frac{1}{2 \sigma^{2}} x^{2}\right)=\frac{1}{\sigma} \phi\left(\frac{x}{\sigma}\right), \\
& F(x)=\int_{-\infty}^{x}\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-\frac{1}{2 \sigma^{2}} z^{2}\right) \mathrm{d} z=\Phi\left(\frac{x}{\sigma}\right) .
\end{aligned}
$$

[Review - Mean of Truncated Normal Random Variable:]

Let X be a normal random variable with mean μ and variance σ^{2}.
Consider $\mathrm{E}(X \mid X>a)$, where a is known.
The truncated distribution of X given $X>a$ is:

$$
f(x \mid x>a)=\frac{\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)}{\int_{a}^{\infty}\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) \mathrm{d} x}=\frac{\frac{1}{\sigma} \phi\left(\frac{x-\mu}{\sigma}\right)}{1-\Phi\left(\frac{a-\mu}{\sigma}\right)} .
$$

$$
\begin{aligned}
\mathrm{E}(X \mid X>a) & =\int_{a}^{\infty} x f(x \mid x>a) \mathrm{d} x=\frac{\int_{a}^{\infty} x\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) \mathrm{d} x}{\int_{a}^{\infty}\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) \mathrm{d} x} \\
& =\frac{\sigma \phi\left(\frac{a-\mu}{\sigma}\right)+\mu\left(1-\Phi\left(\frac{a-\mu}{\sigma}\right)\right)}{1-\Phi\left(\frac{a-\mu}{\sigma}\right)}=\frac{\sigma \phi\left(\frac{a-\mu}{\sigma}\right)}{1-\Phi\left(\frac{a-\mu}{\sigma}\right)}+\mu,
\end{aligned}
$$

which are shown below. The denominator is:

$$
\begin{aligned}
\int_{a}^{\infty}\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) \mathrm{d} x & =\int_{\frac{a-\mu}{\sigma}}^{\infty}(2 \pi)^{-1 / 2} \exp \left(-\frac{1}{2} z^{2}\right) \mathrm{d} z \\
& =1-\int_{-\infty}^{\frac{a-\mu}{\sigma}}(2 \pi)^{-1 / 2} \exp \left(-\frac{1}{2} z^{2}\right) \mathrm{d} z \\
& =1-\Phi\left(\frac{a-\mu}{\sigma}\right)
\end{aligned}
$$

where x is transformed into $z=\frac{x-\mu}{\sigma}$. $x>a \Longrightarrow z=\frac{x-\mu}{\sigma}>\frac{a-\mu}{\sigma}$.

The numerator is:

$$
\begin{aligned}
\int_{a}^{\infty} & x\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) \mathrm{d} x \\
& =\int_{\frac{a-\mu}{\sigma}}^{\infty}(\sigma z+\mu)(2 \pi)^{-1 / 2} \exp \left(-\frac{1}{2} z^{2}\right) \mathrm{d} z \\
& =\sigma \int_{\frac{a-\mu}{\sigma}}^{\infty} z(2 \pi)^{-1 / 2} \exp \left(-\frac{1}{2} z^{2}\right) \mathrm{d} z+\mu \int_{\frac{a-\mu}{\sigma}}^{\infty}(2 \pi)^{-1 / 2} \exp \left(-\frac{1}{2 \sigma^{2}} z^{2}\right) \mathrm{d} z \\
& =\sigma \int_{\frac{1}{2}\left(\frac{a-\mu}{\sigma}\right)^{2}}^{\infty}(2 \pi)^{-1 / 2} \exp (-t) \mathrm{d} t+\mu\left(1-\Phi\left(\frac{a-\mu}{\sigma}\right)\right) \\
& =\sigma \phi\left(\frac{a-\mu}{\sigma}\right)+\mu\left(1-\Phi\left(\frac{a-\mu}{\sigma}\right)\right),
\end{aligned}
$$

where z is transformed into $t=\frac{1}{2} z^{2} . \quad z>\frac{a-\mu}{\sigma} \Longrightarrow t=\frac{1}{2} z^{2}>\frac{1}{2}\left(\frac{a-\mu}{\sigma}\right)^{2}$.

[End of Review]

Therefore, the conditional expectation of u_{i} given $X_{i} \beta+u_{i}>a$ is:

$$
\begin{aligned}
\mathrm{E}\left(u_{i} \mid X_{i} \beta+u_{i}>a\right) & =\int_{a-X_{i} \beta}^{\infty} u_{i} \frac{f\left(u_{i}\right)}{1-F\left(a-X_{i} \beta\right)} \mathrm{d} u_{i}=\int_{a-X_{i} \beta}^{\infty} \frac{u_{i}}{\sigma} \frac{\phi\left(\frac{u_{i}}{\sigma}\right)}{1-\Phi\left(\frac{a-X_{i} \beta}{\sigma}\right)} \mathrm{d} u_{i} \\
& =\frac{\sigma \phi\left(\frac{a-X_{i} \beta}{\sigma}\right)}{1-\Phi\left(\frac{a-X_{i} \beta}{\sigma}\right)} .
\end{aligned}
$$

Accordingly, the conditional expectation of y_{i} given $y_{i}>a$ is given by:

$$
\begin{aligned}
\mathrm{E}\left(y_{i} \mid y_{i}>a\right) & =\mathrm{E}\left(y_{i} \mid X_{i} \beta+u_{i}>a\right)=\mathrm{E}\left(X_{i} \beta+u_{i} \mid X_{i} \beta+u_{i}>a\right) \\
& =X_{i} \beta+\mathrm{E}\left(u_{i} \mid X_{i} \beta+u_{i}>a\right)=X_{i} \beta+\frac{\sigma \phi\left(\frac{a-X_{i} \beta}{\sigma}\right)}{1-\Phi\left(\frac{a-X_{i} \beta}{\sigma}\right)},
\end{aligned}
$$

for $i=1,2, \cdots, n$.

Estimation:

MLE:

$$
L\left(\beta, \sigma^{2}\right)=\prod_{i=1}^{n} \frac{f\left(y_{i}-X_{i} \beta\right)}{1-F\left(a-X_{i} \beta\right)}=\prod_{i=1}^{n} \frac{1}{\sigma} \frac{\phi\left(\frac{y_{i}-X_{i} \beta}{\sigma}\right)}{1-\Phi\left(\frac{a-X_{i} \beta}{\sigma}\right)}
$$

is maximized with respect to β and σ^{2}.

Some Examples:

1. Buying a Car:
$y_{i}=x_{i} \beta+u_{i}$, where y_{i} denotes expenditure for a car, and x_{i} includes income, price of the car, etc.

Data on people who bought a car are observed.
People who did not buy a car are ignored.
2. Working-hours of Wife:
y_{i} represents working-hours of wife, and x_{i} includes the number of children, age, education, income of husband, etc.
3. Stochastic Frontier Model:
$y_{i}=f\left(K_{i}, L_{i}\right)+u_{i}$, where y_{i} denotes production, K_{i} is stock, and L_{i} is amount of labor.

We always have $y_{i} \leq f\left(K_{i}, L_{i}\right)$, i.e., $u_{i} \leq 0$.
$f\left(K_{i}, L_{i}\right)$ is a maximum value when we input K_{i} and L_{i}.

