Kronecker Product - Review:

1. $A: n \times m, \quad B: T \times k$

$$
A \otimes B=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 m} B \\
a_{21} B & a_{22} B & \cdots & a_{2 m} B \\
\vdots & \vdots & \cdots & \vdots \\
a_{n 1} B & a_{n 2} B & \cdots & a_{n m} B
\end{array}\right) \text {, which is a } n T \times m k \text { matrix. }
$$

2. $A: n \times n, \quad B: m \times m$

$$
\begin{array}{lr}
(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}, & |A \otimes B|=|A|^{m}|B|^{n}, \\
(A \otimes B)^{\prime}=A^{\prime} \otimes B^{\prime}, & \operatorname{tr}(A \otimes B)=\operatorname{tr}(A) \operatorname{tr}(B) .
\end{array}
$$

3. For A, B, C and D such that the products are defined,

$$
(A \otimes B)(C \otimes D)=A C \otimes B D .
$$

End of Review

Going back to the previous slide, using the Kronecker product, we obtain the following expression:

$$
\left(I_{n} \otimes D_{T}\right) y=\left(I_{n} \otimes D_{T}\right) X \beta+\left(I_{n} \otimes D_{T}\right) u,
$$

where $\left(I_{n} \otimes D_{T}\right), y, X$, and u are $n T \times n T, n T \times 1, n T \times k$, and $n T \times 1$, respectively.

Apply OLS to the above regression model.

$$
\begin{aligned}
\hat{\beta} & =\left(\left(\left(I_{n} \otimes D_{T}\right) X\right)^{\prime}\left(I_{n} \otimes D_{T}\right) X\right)^{-1}\left(\left(I_{n} \otimes D_{T}\right) X\right)^{\prime}\left(I_{n} \otimes D_{T}\right) y \\
& =\left(X^{\prime}\left(I_{n} \otimes D_{T}^{\prime} D_{T}\right) X\right)^{-1} X^{\prime}\left(I_{n} \otimes D_{T}^{\prime} D_{T}\right) y \\
& =\left(X^{\prime}\left(I_{n} \otimes D_{T}\right) X\right)^{-1} X^{\prime}\left(I_{n} \otimes D_{T}\right) y .
\end{aligned}
$$

Note that the inverse matrix of D_{T} is not available, because the rank of D_{T} is $T-1$, not T (full rank).

The rank of a symmetric and idempotent matrix is equal to its trace.

The fixed effect v_{i} is estimated as:

$$
\hat{v}_{i}=\bar{y}_{i}-\bar{X}_{i} \hat{\beta}
$$

Possibly, we can estimate the following regression:

$$
\hat{v}_{i}=Z_{i} \alpha+\epsilon_{i},
$$

where it is assumed that the individual-specific effect depends on Z_{i}.

The estimator of σ_{u}^{2} is given by:

$$
\hat{\sigma}_{u}^{2}=\frac{1}{n T-k-n} \sum_{i=1}^{n} \sum_{t=1}^{T}\left(y_{i t}-X_{i t} \hat{\beta}-\hat{v}_{i}\right)^{2} .
$$

[Remark]

More than ten years ago, "fixed" indicates that v_{i} is nonstochastic.
Recently, however, "fixed" does not mean anything.
"fixed" indicates that OLS is applied and that v_{i} may be correlated with $X_{i t}$.

Possibly, $\mathrm{E}\left(v_{i} \mid X\right)=\alpha_{i}(X)$, where $\alpha_{i}(X)$ is a function of $X_{i t}$ for $i=1,2, \cdots, n$ and $t=1,2, \cdots, T$, and it is normalized to $\sum_{i=1}^{n} \alpha_{i}(X)=0$.

3．2．2 Random Effect Model（ランダム効果モデル）

Model：

$$
y_{i t}=X_{i t} \beta+v_{i}+u_{i t}, \quad i=1,2, \cdots, n, \quad t=1,2, \cdots, T
$$

where i indicates individual and t denotes time．
The assumptions on the error terms v_{i} and $u_{i t}$ are：

$$
\begin{aligned}
& \mathrm{E}\left(v_{i} \mid X\right)=\mathrm{E}\left(u_{i t} \mid X\right)=0 \text { for all } i, \\
& \mathrm{~V}\left(v_{i} \mid X\right)=\sigma_{v}^{2} \text { for all } i, \quad \mathrm{~V}\left(u_{i t} \mid X\right)=\sigma_{u}^{2} \text { for all } i \text { and } t, \\
& \operatorname{Cov}\left(v_{i}, v_{j} \mid X\right)=0 \text { for } i \neq j, \quad \operatorname{Cov}\left(u_{i t}, u_{j s} \mid X\right)=0 \text { for } i \neq j \text { and } t \neq s, \\
& \operatorname{Cov}\left(v_{i}, u_{j t} \mid X\right)=0 \text { for all } i, j \text { and } t .
\end{aligned}
$$

Note that X includes $X_{i t}$ for $i=1,2, \cdots, n$ and $t=1,2, \cdots, T$ ．

In a matrix form with respect to $t=1,2, \cdots, T$, we have the following:

$$
\begin{gathered}
y_{i}=X_{i} \beta+v_{i} 1_{T}+u_{i}, \quad i=1,2, \cdots, n, \\
\text { where } y_{i}=\left(\begin{array}{c}
y_{i 1} \\
y_{i 2} \\
\vdots \\
y_{i T}
\end{array}\right), X_{i}=\left(\begin{array}{c}
X_{i 1} \\
X_{i 2} \\
\vdots \\
X_{i T}
\end{array}\right) \text { and } u_{i}=\left(\begin{array}{c}
u_{i 1} \\
u_{i 2} \\
\vdots \\
u_{i T}
\end{array}\right) \text { are } T \times 1, T \times k \text { and } T \times 1 \text {, respectively. } \\
u_{i} \sim N\left(0, \sigma_{u}^{2} I_{T}\right) \text { and } v_{i} 1_{T} \sim N\left(0, \sigma_{v}^{2}\right) \Longrightarrow v_{i} 1_{T}+u_{i} \sim N\left(0, \sigma_{v}^{2} 1_{T} 1_{T}^{\prime}+\sigma_{u}^{2} I_{T}\right) .
\end{gathered}
$$

Again, in a matrix form with respect to i, we have the following:

$$
y=X \beta+v+u,
$$

where $y=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right), X=\left(\begin{array}{c}X_{1} \\ X_{2} \\ \vdots \\ X_{n}\end{array}\right), v=\left(\begin{array}{c}v_{1} 1_{T} \\ v_{2} 1_{T} \\ \vdots \\ v_{n} 1_{T}\end{array}\right)$ and $u=\left(\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right)$ are $n T \times 1, n T \times k, n T \times 1$ and
$n T \times 1$, respectively.

The distribution of $u+v$ is given by:

$$
v+u \sim N\left(0, I_{n} \otimes\left(\sigma_{v}^{2} 1_{T} 1_{T}^{\prime}+\sigma_{u}^{2} I_{T}\right)\right)
$$

The likelihood function is given by:

$$
\begin{aligned}
L\left(\beta, \sigma_{v}^{2}, \sigma_{u}^{2}\right) & =(2 \pi)^{-n T / 2}\left|I_{n} \otimes\left(\sigma_{v}^{2} 1_{T} 1_{T}^{\prime}+\sigma_{u}^{2} I_{T}\right)\right|^{-1 / 2} \\
& \times \exp \left(-\frac{1}{2}(y-X \beta)^{\prime}\left(I_{n} \otimes\left(\sigma_{v}^{2} 1_{T} 1_{T}^{\prime}+\sigma_{u}^{2} I_{T}\right)\right)^{-1}(y-X \beta)\right) .
\end{aligned}
$$

Remember that $f(x)=(2 \pi)^{-k / 2}|\Sigma|^{-1 / 2} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right)$ when $X \sim N(\mu, \Sigma)$, where X denotes a k-variate random variable.

The estimators of β, σ_{v}^{2} and σ_{u}^{2} are given by maximizing the following log-likelihood function:

$$
\begin{aligned}
\log L\left(\beta, \sigma_{v}^{2}, \sigma_{u}^{2}\right)= & -\frac{n T}{2} \log (2 \pi)-\frac{1}{2} \log \left|I_{n} \otimes\left(\sigma_{v}^{2} 1_{T} 1_{T}^{\prime}+\sigma_{u}^{2} I_{T}\right)\right| \\
& -\frac{1}{2}(y-X \beta)^{\prime}\left(I_{n} \otimes\left(\sigma_{v}^{2} 1_{T} 1_{T}^{\prime}+\sigma_{u}^{2} I_{T}\right)\right)^{-1}(y-X \beta) .
\end{aligned}
$$

MLE of β, denoted by $\tilde{\beta}$, is given by:

$$
\begin{aligned}
\tilde{\beta} & =\left(X^{\prime}\left(I_{n} \otimes\left(\sigma_{v}^{2} 1_{T} 1_{T}^{\prime}+\sigma_{u}^{2} I_{T}\right)\right)^{-1} X\right)^{-1} X^{\prime}\left(I_{n} \otimes\left(\sigma_{v}^{2} 1_{T} 1_{T}^{\prime}+\sigma_{u}^{2} I_{T}\right)\right)^{-1} y \\
& =\left(\sum_{i=1}^{n} X_{i}^{\prime}\left(\sigma_{v}^{2} 1_{T} 1_{T}^{\prime}+\sigma_{u}^{2} I_{T}\right)^{-1} X_{i}\right)^{-1}\left(\sum_{i=1}^{n} X_{i}^{\prime}\left(\sigma_{v}^{2} 1_{T} 1_{T}^{\prime}+\sigma_{u}^{2} I_{T}\right)^{-1} y_{i}\right),
\end{aligned}
$$

which is equivalent to GLS.
Note that $\tilde{\beta}$ is not operational, because $\hat{\beta}$ depends on σ_{v}^{2} and σ_{u}^{2}.

