3.3 Hausman’s Specification Error ([J (I [J 0 [ ) Test

Regression model:
y=XB+u, yinxl, X:nxk p:kx1l, wu:nxl.
Suppose that X is stochastic.

If E(u|X) = 0, OLSE } is unbiased because of 8 = (X’X)"'X'y = 8+ (X’X)"'X’u and
E(X’X)"'X"u) = 0.

However, If E(u|X) # 0, OLSE B is biased and inconsistent.

Therefore, we need to check if X is correlated with u or not.

—> Hausman’s Specification Error Test

112



The null and alternative hypotheses are:
e Hy: X and u are independent, i.e., Cov(X, u) = 0,
e H;: X and u are not independent.
Suppose that we have two estimators 3, and 3;, which have the following properties:

° ﬁo is consistent and efficient under H,, but is not consistent under H;,

° ﬁl is consistent under both H, and H, but is not efficient under H,,.
Under the conditions above, we have the following test statistic:
B~ oY (VB) - VB0) B —Bo) — (b,
Example: j, is OLS, while 3, is IV such as 2SLS.

Hausman, J.A. (1978) “Specification Tests in Econometrics,” Econometrica, Vol.46,

No.6, pp.1251-1271.
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3.4 Choice of Fixed Effect Model or Random Effect Model
3.4.1 The Case where X is Correlated with u — Review

The standard regression model is given by:
y=XB+u, u ~ N0, c>1,)

OLS is:
B=XX)"Xy=8+XX)"Xu

If X is not correlated with u, i.e., E(X'u) = 0, we have the result: E(,@) =p.

However, if X is correlated with u, i.e., E(X"u) # 0, we have the result: E(B) * B.

= f3is biased.
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Assume that in the limit we have the followings:

1
-x'X)"'" — MmM!
n

1
-X'u — M,, # 0 when X is correlated with u.
n
Therefore, even in the limit,
plimp =B+ MM, # B,

which implies that /3 is not a consistent estimator of 3.

Thus, in the case where X is correlated with u, OLSE ﬁ is neither unbiased nor con-

sistent.
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3.4.2 Fixed Effect Model or Random Effect Model

Usually, in the random effect model, we can consider that v; is correlated with X;,.

[Reason:]

v; includes the unobserved variables in the ith individual, i.e., ability, intelligence,
and so on.

X;; represents the observed variables in the ith individual, i.e., income, assets, and so
on.

The unobserved variables v; are related to the observed variables X;;.

Therefore, we consider that v; is correlated with Xj;.

Thus, in the case of the random effect model, usually we cannot use OLS or GLS.
In order to use the random effect model, we need to test whether v; is uncorrelated

With Xl'[.
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Apply Hausman’s test.
e Hy: X; and ¢; are independent (— Use the random effect model),
e H,: X and e; are not independent (— Use the fixed effect model),

where e; = v; + u;;.

Note that:

e We can use the random effect model under H,, but not under H;.

e We can use the fixed effect model under both H, and H,.

e The random effect model is more efficient than the fixed effect model under H,.
Therefore, under H, we should use the random effect model, rather than the fixed

effect model.
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3.5 Applications

Example of Panel Data in Section 3:  Production Function of Prefectures from

2001 to 2010.

pref: DO 0OODOOOOO 10470

year: [J [J 02001020100 O

y ooboooooobbooboboboboobobobooobooobooog
O 1300 -002400M0M93SNADDO 170000000

k :0000b0oo0o0oooob0ob0ob rooooooooboooogo
gbooobob23030000000020000200900

1 00000000000 00o0boOoubbDI130b -00 240000 93SNAL
00 17o0o0oooog

. tsset pref year
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panel variable: pref (strongly balanced)
time variable: vyear,

delta: 1 unit

- gen ly=log(y)
. gen lk=log(k)
. gen 1l=log(l)
. reg ly 1k 11

I
+
Model | 316.479302
I
+
I

2001 to 2010

2 158.239651
467 .008167229

Number of obs
FC 2, 467)
Prob > F
R-squared

Adj R-squared
Root MSE

470
19374.95
0.0000
0.9881
0.9880
.09037

Residual 3.81409572
Total 320.293398

ly Coef.

1k .0941587

11 .9976399

cons .5970719

.0081273
.0102641
.0773137

.0781881
.9774703
.4451461

.1101294
1.017809
.7489978

. xtreg ly 1k 11,fe
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Fixed-effects (within) regression Number of obs = 470

Group variable: pref Number of groups = 47

R-sq: within = 0.1721 Obs per group: min = 10

between = 0.9456 avg = 10.0

overall = 0.9439 max = 10

F(2,421) = 43.77

corr(u_i, Xb) = 0.8803 Prob > F = 0.0000

ly | Coef Std. Err t P>t [95% Conf. Interval]

_____________ +________________________________________________________________

1k | .2329208 .0252321 9.23 0.000 .1833242 .2825175

11 | .3268537 .0810662 4.03 0.000 .1675088 .4861987

_cons | 7.691145 1.376677 5.59 0.000 4.985128 10.39716

_____________ +________________________________________________________________

sigma_u | .41045507
sigma_e | .03561437
rho | .99252757 (fraction of variance due to u_i)
F test that all u_i=0: F(46, 421) = 56.22 Prob > F = 0.0000
. est store fixed

. xtreg ly 1k 1l,re

Random-effects GLS regression Number of obs = 470

Group variable: pref Number of groups = 47
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R-sq: within = 0.1058 Obs per group: min = 10
between = 0.9805 avg = 10.0
overall = 0.9787 max = 10

Wald chi2(2) = 3875.75

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

ly | Coef. Std. Err z P>|z| [95% Conf. Intervall]

_____________ +________________________________________________________________

1k | .2457767 .0153094 16.05 0.000 .2157708 .2757827
11 | .8105099 .0220256 36.80 0.000 .7673406 .8536793
_cons | .8332015 .2411141 3.46 0.001 .3606265 1.305776
_____________ +________________________________________________________________
sigma_u | .081609
sigma_e | .03561437
rho | .8400205 (fraction of variance due to u_i)
hausman fixed
---- Coefficients ----
| (b) (®) (b-B) sqrt(diag(V_b-V_B))
| fixed . Difference S.E.
_____________ +________________________________________________________________
1k | .2329208 .2457767 -.09128559 .020057
11 | .3268537 .8105099 -.4836562 .0780167



b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(2) = (b-B)’[(V_b-V_B)"(-1)](b-B)
= 144.66
Prob>chi2 = 0.0000
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4 Generalized Method of Moments (GMM, U [ [0 [
0a)

4.1 Method of Moments (MM, [ I 1)

_ 1<
As n — oo, we have the result: X = — ZXi — E(X) = .
n
i=1
— Law of Large Number (I O O 0 [)

X1, X, -+, X, are n realizations of X.

[Review] Chebyshev’s inequality (U 0 0 0 0O 0O 0O OO O) is given by:

2 2
PIX-ul><Z or PIX-pl<e)>1-=,
€ €

where u = E(X), 0* = V(X) and any € > 0.
Note that P(|IX —u| > e€)+ P(X —u| <€) = 1.

2
Replace X, E(X) and V(X) by X, E(X) = y and V(X) = .
n
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Asn — oo,
2

P(|Y—,u|§e)21—o-—2 — 1.
ne

Thatis, X — pasn — oo.

[End of Review]

X is an approximation of E(X) = u.

- 1y ) )
Therefore, X = — E X; is taken as an estimator of .
n
i=1

— X is MM estimator of E(X) = u.

124



MM is applied to the regression model as follows:
Regression model: y; = x;,8 + u;, where x; and u; are assumed to be stochastic.

Familiar Assumption: E(x'u) = 0, called the orthogonality condition (O [J 0 [0 ),

where x1s a 1 X k vector and u is a scalar.

We consider that (xy, x5, - -+, x,,) and (uy, uy, - - -, u,) are realizations generated from

random variables x and u, respectively.

From the law of large number, we have the following:

n 4

1 n 1 n
=3 Y=~ Xy - x8) — E@'w)=0.
n
i=1 i=1
Thus, the MM estimator of 3, denoted by S,, satisfies:
1«
p Z; x; Vi — xiBum) = 0.
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Therefore, By is given by:

n n

Bum = (% Z x;xi)_l(% Z x;)’i) = (X,X)_IX'Y,

i=1 i=1

which is equivalent to OLS and MLE.

Note that X and y are:

X1 Y1

X2 Y2
X = y=

Xn Yn
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