3.3 Hausman's Specification Error (特定化誤差) Test

Regression model:

$$y = X\beta + u$$
, $y : n \times 1$, $X : n \times k$, $\beta : k \times 1$, $u : n \times 1$.

Suppose that *X* is stochastic.

If
$$E(u|X) = 0$$
, OLSE $\hat{\beta}$ is unbiased because of $\hat{\beta} = (X'X)^{-1}X'y = \beta + (X'X)^{-1}X'u$ and $E((X'X)^{-1}X'u) = 0$.

However, If $E(u|X) \neq 0$, OLSE $\hat{\beta}$ is biased and inconsistent.

Therefore, we need to check if *X* is correlated with *u* or not.

⇒ Hausman's Specification Error Test

The null and alternative hypotheses are:

- H_0 : X and u are independent, i.e., Cov(X, u) = 0,
- H_1 : X and u are not independent.

Suppose that we have two estimators $\hat{\beta}_0$ and $\hat{\beta}_1$, which have the following properties:

- $\hat{\beta}_0$ is consistent and efficient under H_0 , but is not consistent under H_1 ,
- $\hat{\beta}_1$ is consistent under both H_0 and H_1 , but is not efficient under H_0 .

Under the conditions above, we have the following test statistic:

$$(\hat{\beta}_1 - \hat{\beta}_0)' \left(\mathbf{V}(\hat{\beta}_1) - \mathbf{V}(\hat{\beta}_0) \right)^{-1} (\hat{\beta}_1 - \hat{\beta}_0) \longrightarrow \chi^2(k).$$

Example: $\hat{\beta}_0$ is OLS, while $\hat{\beta}_1$ is IV such as 2SLS.

Hausman, J.A. (1978) "Specification Tests in Econometrics," *Econometrica*, Vol.46, No.6, pp.1251–1271.

3.4 Choice of Fixed Effect Model or Random Effect Model

3.4.1 The Case where X is Correlated with u — Review

The standard regression model is given by:

$$y = X\beta + u, \qquad u \sim N(0, \sigma^2 I_n)$$

OLS is:

$$\hat{\beta} = (X'X)^{-1}X'y = \beta + (X'X)^{-1}X'u.$$

If X is not correlated with u, i.e., E(X'u) = 0, we have the result: $E(\hat{\beta}) = \beta$.

However, if *X* is correlated with *u*, i.e., $E(X'u) \neq 0$, we have the result: $E(\hat{\beta}) \neq \beta$. $\implies \hat{\beta}$ is biased.

Assume that in the limit we have the followings:

$$(\frac{1}{n}X'X)^{-1} \longrightarrow M_{xx}^{-1},$$

 $\frac{1}{n}X'u \longrightarrow M_{xu} \neq 0$ when X is correlated with u.

Therefore, even in the limit,

$$\operatorname{plim} \hat{\beta} = \beta + M_{xx}^{-1} M_{xu} \neq \beta,$$

which implies that $\hat{\beta}$ is not a consistent estimator of β .

Thus, in the case where X is correlated with u, OLSE $\hat{\beta}$ is neither unbiased nor consistent.

3.4.2 Fixed Effect Model or Random Effect Model

Usually, in the random effect model, we can consider that v_i is correlated with X_{it} .

[Reason:]

 v_i includes the unobserved variables in the *i*th individual, i.e., ability, intelligence, and so on.

 X_{it} represents the observed variables in the *i*th individual, i.e., income, assets, and so on.

The unobserved variables v_i are related to the observed variables X_{it} .

Therefore, we consider that v_i is correlated with X_{it} .

Thus, in the case of the random effect model, usually we cannot use OLS or GLS.

In order to use the random effect model, we need to test whether v_i is uncorrelated with X_{it} .

Apply Hausman's test.

- $H_0: X_{it}$ and e_{it} are independent (\longrightarrow Use the random effect model),
- $H_1: X_{it}$ and e_{it} are not independent (\longrightarrow Use the fixed effect model),

where $e_{it} = v_i + u_{it}$.

Note that:

- We can use the random effect model under H_0 , but not under H_1 .
- We can use the fixed effect model under both H_0 and H_1 .
- The random effect model is more efficient than the fixed effect model under H_0 .

Therefore, under H_0 we should use the random effect model, rather than the fixed effect model.

3.5 Applications

Example of Panel Data in Section 3: Production Function of Prefectures from

2001 to 2010.

pref: 都道府県(通し番号1~47)

year: 年度 (2001~2010年)

y : 県内総生産(支出側、実質: 固定基準年方式), 出所: 県民経済計算(平成 13 年度-平成 24 年度)(93SNA, 平成 17 年基準計数)

k : 都道府県別民間資本ストック(平成12暦年価格,年度末,国民経済計算ベース 平成23年3月時点)一期前(2000~2009年)

1 : 県内就業者数,出所:県民経済計算(平成13年度-平成24年度)(93SNA, 平成17年基準計数)

. tsset pref year

panel variable: pref (strongly balanced)

time variable: year, 2001 to 2010

delta: 1 unit

. gen ly=log(y)

. gen lk=log(k)

. gen 11=log(1)

. reg ly lk ll

Source	SS	df	MS		Number of obs = 470
Model Residual Total	316.479302	2 1 467 .	58.239651 008167229 682928354		F(2, 467) =19374.95 Prob > F = 0.0000 R-squared = 0.9881 Adj R-squared = 0.9880 Root MSE = .09037
ly	Coef.	Std. Er	r. t	P> t	[95% Conf. Interval]
lk 11 _cons	.0941587 .9976399 .5970719	.008127 .010264 .077313	97.20	0.000 0.000 0.000	.0781881 .1101294 .9774703 1.017809 .4451461 .7489978

. xtreg ly lk ll,fe

```
Fixed-effects (within) regression
                                               Number of obs = 470
Group variable: pref
                                               Number of groups =
                                                                        47
R-sq: within = 0.1721
                                               Obs per group: min =
                                                                    10
       between = 0.9456
                                                              ava =
                                                                    10.0
       overall = 0.9439
                                                              max =
                                                                         10
                                                             = 43.77
= 0.0000
                                               F(2.421)
corr(u i. Xb) = 0.8803
                                               Prob > F
         lv | Coef. Std. Err. t P>|t| [95% Conf. Interval]
                .2329208 .0252321 9.23 0.000 .1833242 .2825175 .3268537 .0810662 4.03 0.000 .1675088 .4861987 7.691145 1.376677 5.59 0.000 4.985128 10.39716
          1k |
          11 | .3268537 .0810662
      cons | 7.691145
     sigma_u | .41045507
     sigma_e | .03561437
               .99252757 (fraction of variance due to u i)
         rho |
F test that all u i=0: F(46.421) = 56.22 Prob > F = 0.0000
. est store fixed
. xtreq ly lk ll,re
Random-effects GLS regression
                                               Number of obs =
                                                                          470
Group variable: pref
                                               Number of groups =
                                                                          47
```

```
R-sq: within = 0.1058
                                               Obs per group: min =
                                                                    10
       hetween = 0.9805
                                                              avg = 10.0
       overall = 0.9787
                                                              max =
                                                                        10
                                               Wald chi2(2) = 3875.75
corr(u i. X) = 0 (assumed)
                                               Prob > chi2 = 0.0000
         ly | Coef. Std. Err. z P>|z| [95% Conf. Interval]
         lk | .2457767 .0153094 16.05 0.000 .2157708 .2757827 ll | .8105099 .0220256 36.80 0.000 .7673406 .8536793 ons | .8332015 .2411141 3.46 0.001 .3606265 1.305776
      _cons | .8332015
     sigma_u | .081609
    sigma_e | .03561437
        rho | .8400205 (fraction of variance due to u_i)
hausman fixed
                 ---- Coefficients ----
                                          (b-B) sqrt(diag(V_b-V_B))
Difference S.E.
                  (b) (B)
                  fixed
          1k | .2329208 .2457767 -.0128559 .020057
          11 |
                 .3268537
                          .8105099
                                        -.4836562
                                                             .0780167
```

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

$$chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B)$$

= 144.66

Prob>chi2 = 0.0000

4 Generalized Method of Moments (GMM, 一般化積率法)

4.1 Method of Moments (MM, 積率法)

As $n \longrightarrow \infty$, we have the result: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \longrightarrow E(X) = \mu$.

⇒ Law of Large Number (大数の法則)

 X_1, X_2, \dots, X_n are *n* realizations of *X*.

[Review] Chebyshev's inequality (チェビシェフの不等式) is given by:

$$P(|X - \mu| > \epsilon) \le \frac{\sigma^2}{\epsilon^2}$$
 or $P(|X - \mu| \le \epsilon) \ge 1 - \frac{\sigma^2}{\epsilon^2}$,

where $\mu = E(X)$, $\sigma^2 = V(X)$ and any $\epsilon > 0$.

Note that $P(|X - \mu| > \epsilon) + P(|X - \mu| \le \epsilon) = 1$.

Replace X, E(X) and V(X) by \overline{X} , E(\overline{X}) = μ and V(\overline{X}) = $\frac{\sigma^2}{n}$.

As $n \longrightarrow \infty$,

$$P(|\overline{X} - \mu| \le \epsilon) \ge 1 - \frac{\sigma^2}{n\epsilon^2} \longrightarrow 1.$$

That is, $\overline{X} \longrightarrow \mu$ as $n \longrightarrow \infty$.

[End of Review]

 \overline{X} is an approximation of $E(X) = \mu$.

Therefore, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is taken as an estimator of μ .

$$\implies \overline{X}$$
 is MM estimator of $E(X) = \mu$.

MM is applied to the regression model as follows:

Regression model: $y_i = x_i \beta + u_i$, where x_i and u_i are assumed to be stochastic.

Familiar Assumption: E(x'u) = 0, called the **orthogonality condition** (直交条件), where x is a $1 \times k$ vector and u is a scalar.

We consider that (x_1, x_2, \dots, x_n) and (u_1, u_2, \dots, u_n) are realizations generated from random variables x and u, respectively.

From the law of large number, we have the following:

$$\frac{1}{n} \sum_{i=1}^{n} x_i' u_i = \frac{1}{n} \sum_{i=1}^{n} x_i' (y_i - x_i \beta) \longrightarrow E(x' u) = 0.$$

Thus, the MM estimator of β , denoted by β_{MM} , satisfies:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}'(y_{i}-x_{i}\beta_{MM})=0.$$

Therefore, β_{MM} is given by:

$$\beta_{MM} = \left(\frac{1}{n} \sum_{i=1}^{n} x_i' x_i\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} x_i' y_i\right) = (X'X)^{-1} X' y,$$

which is equivalent to OLS and MLE.

Note that *X* and *y* are:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}.$$