We assume that

$$
\frac{1}{n} X^{\prime} Z \longrightarrow M_{x z} \quad \text { and } \quad \frac{1}{n} Z^{\prime} \Omega Z \longrightarrow M_{z \Omega z}
$$

which are $k \times r$ and $r \times r$ matrices.
From the assumption of $\frac{1}{n} Z^{\prime} u \longrightarrow 0$, we have the following result:

$$
\beta_{G M M} \longrightarrow \beta+\left(M_{x z} M_{z \Omega z}^{-1} M_{x z}^{\prime}\right)^{-1} M_{x z} M_{z \Omega z}^{-1} \times 0=\beta
$$

Thus, $\beta_{G M M}$ is a consistent estimator of β (i.e., asymptotically unbiased estimator).

The variance of $\beta_{G M M}$ is asymptotically obtained as follows:

$$
\begin{aligned}
& \mathrm{V}\left(\beta_{G M M}\right)=\mathrm{E}\left(\left(\beta_{G M M}-\mathrm{E}\left(\beta_{G M M}\right)\right)\left(\beta_{G M M}-\mathrm{E}\left(\beta_{G M M}\right)\right)^{\prime}\right) \approx \mathrm{E}\left(\left(\beta_{G M M}-\beta\right)\left(\beta_{G M M}-\beta\right)^{\prime}\right) \\
& =\mathrm{E}\left(\left(X^{\prime} Z\left(Z^{\prime} \Omega Z\right)^{-1} Z^{\prime} X\right)^{-1} X^{\prime} Z\left(Z^{\prime} \Omega Z\right)^{-1} Z^{\prime} u\left(\left(X^{\prime} Z\left(Z^{\prime} \Omega Z\right)^{-1} Z^{\prime} X\right)^{-1} X^{\prime} Z\left(Z^{\prime} \Omega Z\right)^{-1} Z^{\prime} u\right)^{\prime}\right) \\
& =\mathrm{E}\left(\left(X^{\prime} Z\left(Z^{\prime} \Omega Z\right)^{-1} Z^{\prime} X\right)^{-1} X^{\prime} Z\left(Z^{\prime} \Omega Z\right)^{-1} Z^{\prime} u u^{\prime} Z\left(Z^{\prime} \Omega Z\right)^{-1} Z^{\prime} X\left(X^{\prime} Z\left(Z^{\prime} \Omega Z\right)^{-1} Z^{\prime} X\right)^{-1}\right) \\
& \approx\left(X^{\prime} Z\left(Z^{\prime} \Omega Z\right)^{-1} Z^{\prime} X\right)^{-1} X^{\prime} Z\left(Z^{\prime} \Omega Z\right)^{-1} Z^{\prime} \mathrm{E}\left(u u^{\prime}\right) Z\left(Z^{\prime} \Omega Z\right)^{-1} Z^{\prime} X\left(X^{\prime} Z\left(Z^{\prime} \Omega Z\right)^{-1} Z^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} Z\left(Z^{\prime} \Omega Z\right)^{-1} Z^{\prime} X\right)^{-1} .
\end{aligned}
$$

Note that $\beta_{G M M} \longrightarrow \beta$ implies $\mathrm{E}\left(\beta_{G M M}\right) \longrightarrow \beta$ in the 1 st line.
\approx in the 4th line indicates that Z and X are treated as exogenous variables although they are stochastic.

We assume that $\mathrm{E}\left(u u^{\prime}\right)=\sigma^{2} \Omega$ from the 4th line to the 5th line.

- We derive the asymptotic distribution of $\beta_{G M M}$.

From the central limit theorem,

$$
\frac{1}{\sqrt{n}} Z^{\prime} u \longrightarrow N\left(0, \sigma^{2} M_{z \Omega z}\right) .
$$

Accordingly, $\beta_{G M M}$ is asymptotically distributed as:

$$
\begin{aligned}
\sqrt{n}\left(\beta_{G M M}-\beta\right) & =\left(\left(\frac{1}{n} X^{\prime} Z\right)\left(\frac{1}{n} Z^{\prime} \Omega Z\right)^{-1}\left(\frac{1}{n} Z^{\prime} X\right)\right)^{-1}\left(\frac{1}{n} X^{\prime} Z\right)\left(\frac{1}{n} Z^{\prime} \Omega Z\right)^{-1}\left(\frac{1}{\sqrt{n}} Z^{\prime} u\right) \\
& \longrightarrow N\left(0, \sigma^{2}\left(M_{x z} M_{z \Omega z}^{-1} M_{x z}^{\prime}\right)^{-1}\right) .
\end{aligned}
$$

Practically, we use: $\beta_{G M M} \sim N\left(\beta, s^{2}\left(X^{\prime} Z\left(Z^{\prime} \Omega Z\right)^{-1} Z^{\prime} X\right)^{-1}\right)$,
where $s^{2}=\frac{1}{n-k}\left(y-X \beta_{G M M}\right)^{\prime} \Omega^{-1}\left(y-X \beta_{G M M}\right)$.
We may use n instead of $n-k$.

Identically and Independently Distributed Errors:

- If $u_{1}, u_{2}, \cdots, u_{n}$ are mutually independent and u_{i} is distributed with mean zero and variance σ^{2}, the mean and variance of u^{*} are given by:

$$
\mathrm{E}\left(u^{*}\right)=0 \quad \text { and } \quad \mathrm{V}\left(u^{*}\right)=\mathrm{E}\left(u^{*} u^{* \prime}\right)=\sigma^{2} Z^{\prime} Z
$$

Using GLS, GMM is obtained as:

$$
\beta_{G M M}=\left(X^{* \prime}\left(Z^{\prime} Z\right)^{-1} X^{*}\right)^{-1} X^{* \prime}\left(Z^{\prime} Z\right)^{-1} y^{*}=\left(X^{\prime} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} X\right)^{-1} X^{\prime} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} y
$$

- We derive the asymptotic distribution of $\beta_{G M M}$.

From the central limit theorem,

$$
\frac{1}{\sqrt{n}} Z^{\prime} u \longrightarrow N\left(0, \sigma^{2} M_{z z}\right)
$$

Accordingly, $\beta_{G M M}$ is distributed as:

$$
\begin{aligned}
\sqrt{n}\left(\beta_{G M M}-\beta\right) & =\left(\left(\frac{1}{n} X^{\prime} Z\right)\left(\frac{1}{n} Z^{\prime} Z\right)^{-1}\left(\frac{1}{n} Z^{\prime} X\right)\right)^{-1}\left(\frac{1}{n} X^{\prime} Z\right)\left(\frac{1}{n} Z^{\prime} Z\right)^{-1}\left(\frac{1}{\sqrt{n}} Z^{\prime} u\right) \\
& \longrightarrow N\left(0, \sigma^{2}\left(M_{x z} M_{z z}^{-1} M_{x z}^{\prime}\right)^{-1}\right)
\end{aligned}
$$

Practically, for large n we use the following distribution:

$$
\beta_{G M M} \sim N\left(\beta, s^{2}\left(X^{\prime} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} X\right)^{-1}\right)
$$

where $s^{2}=\frac{1}{n-k}\left(y-X \beta_{G M M}\right)^{\prime}\left(y-X \beta_{G M M}\right)$.

- The above GMM is equivalent to 2SLS.
$X: n \times k, \quad Z: n \times r, \quad r>k$.
Assume:

$$
\begin{aligned}
& \frac{1}{n} X^{\prime} u=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{\prime} u_{i} \longrightarrow \mathrm{E}\left(x^{\prime} u\right) \neq 0 \\
& \frac{1}{n} Z^{\prime} u=\frac{1}{n} \sum_{i=1}^{n} z_{i}^{\prime} u_{i} \longrightarrow \mathrm{E}\left(z^{\prime} u\right)=0
\end{aligned}
$$

Regress X on Z, i.e., $X=Z \Gamma+V$ by OLS, where Γ is a $r \times k$ unknown parameter matrix and V is an error term,

Denote the predicted value of X by $\hat{X}=Z \hat{\Gamma}=Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} X$, where $\hat{\Gamma}=\left(Z^{\prime} Z\right)^{-1} Z^{\prime} X$.

Review - IV estimator: Consider the regression model is:

$$
y=X \beta+u
$$

Assumption: $\mathrm{E}\left(X^{\prime} u\right) \neq 0$ and $\mathrm{E}\left(Z^{\prime} u\right)=0$.
The $n \times k$ matrix Z is called the instrumental variable (IV).
The IV estimator is given by:

$$
\beta_{I V}=\left(Z^{\prime} X\right)^{-1} Z^{\prime} y
$$

