
5 Time Series Analysis (時系列分析)

5.1 Introduction

代表的テキスト：

・J.D. Hamilton (1994) Time Series Analysis

　沖本・井上訳 (2006)『時系列解析 (上・下)』

・A.C. Harvey (1981) Time Series Models

　国友・山本訳 (1985)『時系列モデル入門』

・沖本竜義 (2010)『経済・ファイナンスデータの計量時系列分析』
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1. Stationarity (定常性) :

Let y1, y2, · · · , yT be time series data.

(a) Weak Stationarity (弱定常性) :

E(yt) = µ,

E((yt − µ)(yt−τ − µ)) = γ(τ), τ = 0, 1, 2, · · ·

The first and second moments do not depend on time.

The second moment depends on time difference, not time itself.

(b) Strong Stationarity (強定常性) :

Let f (yt1 , yt2 , · · ·, ytr ) be the joint distribution of yt1 , yt2 , · · ·, ytr .

f (yt1 , yt2 , · · · , ytr ) = f (yt1+τ, yt2+τ, · · · , ytr+τ)

All the moments are same for all τ.
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2. Ergodicity (エルゴード性) :

As time difference between two data is large, the two data become independent.

y1, y2, · · · , yT is said to be ergodic in mean when y converges in probability to

E(yt).

3. Auto-covariance Function (自己共分散関数) :

E((yt − µ)(yt−τ − µ)) = γ(τ), τ = 0, 1, 2, · · ·
γ(τ) = γ(−τ)

4. Auto-correlation Function (自己相関関数) :

ρ(τ) =
E((yt − µ)(yt−τ − µ))√

Var(yt)
√

Var(yt−τ)
=
γ(τ)
γ(0)

Note that Var(yt) = Var(yt−τ) = γ(0).
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5. Sample Mean (標本平均) :

µ̂ =
1
T

T∑

t=1

yt

6. Sample Auto-covariance (標本自己共分散) :

γ̂(τ) =
1
T

T∑

t=τ+1

(yt − µ̂)(yt−τ − µ̂)

7. Correlogram (コレログラム, or標本自己相関関数) :

ρ̂(τ) =
γ̂(τ)
γ̂(0)

8. Lag Operator (ラグ作要素) :

Lτyt = yt−τ, τ = 1, 2, · · ·
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9. Likelihood Function (尤度関数) — Innovation Form :

The joint distribution of y1, y2, · · · , yT is written as:

f (y1, , y2, · · · , yT ) = f (yT |yT−1, · · · , y1) f (yT−1, · · · , y1)

= f (yT |yT−1, · · · , y1) f (yT−1|yT−2, · · · , y1) f (yT−2, · · · , y1)
...

= f (yT |yT−1, · · · , y1) f (yT−1|yT−2, · · · , y1) · · · f (y2|y1) f (y1)

= f (y1)
T∏

t=2

f (yt|yt−1, · · · , y1).

Therefore, the log-likelihood function is given by:

log f (y1, y2, · · · , yT ) = log f (y1) +

T∑

t=2

log f (yt|yt−1, · · · , y1).

Under the normality assumption, f (yt|yt−1, · · ·, y1) is given by the normal distri-

bution with conditional mean E(yt|yt−1, · · ·, y1) and conditional variance Var(yt|yt−1,
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· · ·, y1).

5.2 Autoregressive Model (自己回帰モデル or ARモデル)

1. AR(p) Model :

yt = φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt,

which is rewritten as:

φ(L)yt = εt,

where

φ(L) = 1 − φ1L − φ2L2 − · · · − φpLp.

2. Stationarity (定常性) :

Suppose that all the p solutions of x from φ(x) = 0 are real numbers
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When the p solutions are greater than one, yt is stationary.

Suppose that the p solutions include imaginary numbers.

When the p solutions are outside unit circle, yt is stationary.

3. Partial Autocorrelation Coefficient (偏自己相関係数), φk,k :

The partial autocorrelation coefficient between yt and yt−k, denoted by φk,k, is

a measure of strength of the relationship between yt and yt−k, after removing

influence of yt−1, · · ·, yt−k+1.

φ1,1 = ρ(1)

( 1 ρ(1)

ρ(1) 1

) (
φ2,1

φ2,2

)
=

(
ρ(1)

ρ(2)

)
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

1 ρ(1) ρ(2)

ρ(1) 1 ρ(1)

ρ(2) ρ(1) 1





φ3,1

φ3,2

φ3,3


=



ρ(1)

ρ(2)

ρ(3)



...



1 ρ(1) · · · ρ(k − 2) ρ(k − 1)

ρ(1) 1 ρ(k − 3) ρ(k − 2)
...

...
...

...

ρ(k − 1) ρ(k − 2) · · · ρ(1) 1





φk,1

φk,2
...

φk,k−1

φk,k



=



ρ(1)

ρ(2)
...

ρ(k)


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Use Cramer’s rule (クラメールの公式) to obtain φk,k.

φk,k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ(1) · · · ρ(k − 2) ρ(1)

ρ(1) 1 ρ(k − 3) ρ(2)
...

...
...

...

ρ(k − 1) ρ(k − 2) · · · ρ(1) ρ(k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ(1) · · · ρ(k − 2) ρ(k − 1)

ρ(1) 1 ρ(k − 3) ρ(k − 2)
...

...
...

...

ρ(k − 1) ρ(k − 2) · · · ρ(1) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Example: AR(1) Model: yt = φ1yt−1 + εt

1. The stationarity condition is: the solution of φ(x) = 1− φ1x = 0, i.e., x = 1/φ1,

is greater than one in absolute value, or equivalently, |φ1| < 1.
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2. Rewriting the AR(1) model,

yt = φ1yt−1 + εt

= φ2
1yt−2 + εt + φ1εt−1

= φ3
1yt−3 + εt + φ1εt−1 + φ2

1εt−2

...

= φs
1yt−s + εt + φ1εt−1 + · · · + φs−1

1 εt−s+1.

As s is large, φs
1 approaches zero. =⇒ Stationarity condition

3. For stationarity, yt = φ1yt−1 + εt is rewritten as:

yt = εt + φ1εt−1 + φ2
1εt−2 + · · ·

MA representation of AR model.

(MA will be discussed later.)
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4. Mean of AR(1) process, µ

µ = E(yt) = E(εt + φ1εt−1 + φ2
1εt−2 + · · ·)

= E(εt) + φ1E(εt−1) + φ2
1E(εt−2) + · · · = 0

5. Variance of AR(1) process, γ(0)

γ(0) = V(yt) = V(εt + φ1εt−1 + φ2
1εt−2 + · · ·)

= V(εt) + V(φ1εt−1) + V(φ2
1εt−2) + · · ·

= V(εt) + φ2
1V(εt−1) + φ4

1V(εt−2) + · · ·
= σ2(1 + φ2

1 + φ4
1 + · · · ) =

σ2

1 − φ2
1

6. Autocovariance and autocorrelation functions of the AR(1) process:

Rewriting the AR(1) process, we have:

yt = φτ1yt−τ + εt + φ1εt−1 + · · · + φτ−1
1 εt−τ+1.
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Therefore, the autocovariance function of AR(1) process is:

γ(τ) = E((yt − µ)(yt−τ − µ)) = E(ytyt−τ)

= E
(
(φτ1yt−τ + εt + φ1εt−1 + · · · + φτ−1

1 εt−τ+1)yt−τ
)

= φτ1E(yt−τyt−τ) + E(εtyt−τ) + φ1E(εt−1yt−τ) + · · · + φτ−1
1 E(εt−τ+1yt−τ)

= φτ1γ(0) =
σ2φτ1

1 − φ2
1

.

The autocorrelation function of AR(1) process is:

ρ(τ) =
γ(τ)
γ(0)

= φτ1.

7. Another Derivation of γ(τ):

Multiply yt−τ on both sides of the AR(1) process and take the expectation:

E(ytyt−τ) = φ1E(yt−1yt−τ) + E(εtyt−τ)
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γ(τ) =


φ1γ(τ − 1), for τ , 0,

φ1γ(τ − 1) + σ2, for τ = 0.

Using γ(τ) = γ(−τ), γ(τ) for τ = 0 is given by:

γ(0) = φ1γ(1) + σ2 = φ2
1γ(0) + σ2.

Note that γ(1) = φ1γ(0).

Autocovariance function γ(τ) is:

γ(τ) = φ1γ(τ − 1) = φ2
1γ(τ − 2) = · · · = φτ1γ(0).

Therefore, γ(0) is given by:

γ(0) =
σ2

1 − φ2
1
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8. Partial autocorrelation function of AR(1) process:

φ1,1 = ρ(1) = φ1

φ2,2 =

∣∣∣∣∣∣
1 ρ(1)

ρ(1) ρ(2)

∣∣∣∣∣∣
∣∣∣∣∣∣

1 ρ(1)

ρ(1) 1

∣∣∣∣∣∣
=
ρ(2) − ρ(1)2

1 − ρ(1)2 = 0

9. Estimation of AR(1) model:

(a) Likelihood function

log f (yT , · · · , y1) = log f (y1) +

T∑

t=2

log f (yt|yt−1, · · · , y1)

= −1
2

log(2π) − 1
2

log
(
σ2

1 − φ2
1

)
− 1
σ2/(1 − φ2

1)
y2

1

−T − 1
2

log(2π) − T − 1
2

log(σ2) − 1
σ2

T∑

t=2

(yt − φ1yt−1)2
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= −T
2

log(2π) − T
2

log(σ2) − 1
2

log
(

1
1 − φ2

1

)

− 1
2σ2/(1 − φ2

1)
y2

1 −
1

2σ2

T∑

t=2

(yt − φ1yt−1)2

Note as follows:

f (y1) =
1√

2πσ2/(1 − φ2
1)

exp
(
− 1

2σ2/(1 − φ2
1)

y2
1

)

f (yt|yt−1, · · · , y1) =
1√

2πσ2
exp

(
− 1

2σ2 (yt − φ1yt−1)2
)

∂ log f (yT , · · · , y1)
∂σ2 = −T

2
1
σ2 +

1
2σ4/(1 − φ2

1)
y2

1 +
1

2σ4

T∑

t=2

(yt − φ1yt−1)2 = 0

∂ log f (yT , · · · , y1)
∂φ1

= − φ1

1 − φ2
1

+
φ1

σ2 y2
1 +

1
σ2

T∑

t=2

(yt − φ1yt−1)yt−1 = 0
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The MLE of φ1 and σ2 satisfies the above two equation.

σ̃2 =
1
T

(1 − φ̃2
1)y2

1 +

T∑

t=2

(yt − φ̃1yt−1)2



φ̃1 =

∑T
t=2 ytyt−1∑T

t=2 y2
t−1

+

(
φ̃1y2

1 −
σ̃2φ̃1

1 − φ̃2
1

) / T∑

t=2

y2
t−1

(b) Ordinary Least Squares (OLS) Method

S (φ1) =

T∑

t=2

(yt − φ1yt−1)2

is minimized with respect to φ1.

φ̂1 =

∑T
t=2 yt−1yt∑T

t=2 y2
t−1

= φ1 +

∑T
t=2 yt−1εt∑T
t=2 y2

t−1

= φ1 +
(1/T )

∑T
t=2 yt−1εt

(1/T )
∑T

t=2 y2
t−1

−→ φ1 +
E(yt−1εt)
E(y2

t−1)
= φ1

OLSE of φ1 is a consistent estimator.
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The following equations are utilized.

E(yt−1εt) = 0

E(y2
t−1) = Var(yt−1) = γ(0)

10. Asymptotic distribution of OLSE φ̂1:

√
T (φ̂1 − φ1) −→ N(0, 1 − φ2

1)

Proof:

yt−1εt, t = 1, 2, · · · ,T , are distributed with mean zero and variance
σ4
ε

1 − φ2
1

.

From the central limit theorem,

(1/T )
∑T

t=1 yt−1εt√
σ4
ε/(1 − φ2

1)/
√

T
−→ N(0, 1)
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Rewriting,
1√
T

T∑

t=1

yt−1εt −→ N(0,
σ4
ε

1 − φ2
1

).

Next,
1
T

T∑

t=1

y2
t−1 −→ E(y2

t−1) = γ(0) =
σ2
ε

1 − φ2
1

yields:

√
T (φ̂1 − φ1) =

(1/
√

T )
∑T

t=1 yt−1εt

(1/T )
∑T

t=1 y2
t−1

−→ N(0, 1 − φ2
1)

11. Some formulas:

(a) Central Limit Theorem

Random variables x1, x2, · · ·, xT are mutually independently distributed

with mean µ and variance σ2.

Define x = (1/T )
∑T

t=1 xt.
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Then,
x − E(x)√

V(x)
=

x − µ
σ/
√

T
−→ N(0, 1)

(b) Central Limit Theorem II

Random variables x1, x2, · · ·, xT are distributed with mean µ and variance

σ2.

Define x = (1/T )
∑T

t=1 xt.

Then,
x − E(x)√

V(x)
−→ N(0, 1)

(c) Let x and y be random variables.

y converges in distribution to a distribution, and x converges in probability

to a fixed value.

Then, xy converges in distribution.
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For example, consider:

y −→ N(µ, σ2), x −→ c.

Then, we obtain:

xy −→ N(cµ, c2σ2)

12. AR(1) +drift: yt = µ + φ1yt−1 + εt

Mean:

Using the lag operator,

φ(L)yt = µ + εt

where φ(L) = 1 − φ1L.

Multiply φ(L)−1 on both sides. Then, when |φ1| < 1, we have:

yt = φ(L)−1µ + φ(L)−1εt.
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Taking the expectation on both sides,

E(yt) = φ(L)−1µ + φ(L)−1E(εt)

= φ(1)−1µ =
µ

1 − φ1

Example: AR(2) Model: Consider yt = φ1yt−1 + φ2yt−2 + εt.

1. The stationarity condition is: two solutions of x from φ(x) = 1−φ1x−φ2x2 = 0

are outside the unit circle.

2. Rewriting the AR(2) model,

(1 − φ1L − φ2L2)yt = εt.

Let 1/α1 and 1/α2 be the solutions of φ(x) = 0.
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Then, the AR(2) model is written as:

(1 − α1L)(1 − α2L)yt = εt,

which is rewritten as:

yt =
1

(1 − α1L)(1 − α2L)
εt

=

(
α1/(α1 − α2)

1 − α1L
+
−α2/(α1 − α2)

1 − α2L

)
εt

3. Mean of AR(2) Model:

When yt is stationary, i.e., α1 and α2 are within the unit circle,

µ = E(yt) = E(φ(L)εt) = 0

4. Autocovariance Function of AR(2) Model:

γ(τ) = E((yt − µ)(yt−τ − µ)) = E(ytyt−τ)
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= E
(
(φ1yt−1 + φ2yt−2 + εt)yt−τ

)

= φ1E(yt−1yt−τ) + φ2E(yt−2yt−τ) + E(εtyt−τ)

=


φ1γ(τ − 1) + φ2γ(τ − 2), for τ , 0,

φ1γ(τ − 1) + φ2γ(τ − 2) + σ2
ε , for τ = 0.

The initial condition is obtained by solving the following three equations:

γ(0) = φ1γ(1) + φ2γ(2) + σ2
ε ,

γ(1) = φ1γ(0) + φ2γ(1),

γ(2) = φ1γ(1) + φ2γ(0).

Therefore, the initial conditions are given by:

γ(0) =

(
1 − φ2

1 + φ2

)
σ2
ε

(1 − φ2)2 − φ2
1

,

γ(1) =
φ1

1 − φ2
γ(0) =

(
φ1

1 − φ2

) (
1 − φ2

1 + φ2

)
σ2
ε

(1 − φ2)2 − φ2
1

.
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Given γ(0) and γ(1), we obtain γ(τ) as follows:

γ(τ) = φ1γ(τ − 1) + φ2γ(τ − 2), for τ = 2, 3, · · ·.

5. Another solution for γ(0):

From γ(0) = φ1γ(1) + φ2γ(2) + σ2
ε ,

γ(0) =
σ2
ε

1 − φ1ρ(1) − φ2ρ(2)

where

ρ(1) =
φ1

1 − φ2
, ρ(2) = φ1ρ(1) + φ2 =

φ2
1 + (1 − φ2)φ2

1 − φ2
.

6. Autocorrelation Function of AR(2) Model:

Given ρ(1) and ρ(2),

ρ(τ) = φ1ρ(τ − 1) + φ2ρ(τ − 2), for τ = 3, 4, · · ·,
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7. φk,k = Partial Autocorrelation Coefficient of AR(2) Process:



1 ρ(1) · · · ρ(k − 2) ρ(k − 1)

ρ(1) 1 ρ(k − 3) ρ(k − 2)
...

...
...

...

ρ(k − 1) ρ(k − 2) · · · ρ(1) 1





φk,1

φk,2
...

φk,k−1

φk,k



=



ρ(1)

ρ(2)
...

ρ(k)


,

for k = 1, 2, · · ·.
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φk,k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ(1) · · · ρ(k − 2) ρ(1)

ρ(1) 1 ρ(k − 3) ρ(2)
...

...
...

...

ρ(k − 1) ρ(k − 2) · · · ρ(1) ρ(k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ(1) · · · ρ(k − 2) ρ(k − 1)

ρ(1) 1 ρ(k − 3) ρ(k − 2)
...

...
...

...

ρ(k − 1) ρ(k − 2) · · · ρ(1) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Autocovariance Functions:

γ(1) = φ1γ(0) + φ2γ(1),

γ(2) = φ1γ(1) + φ2γ(0),
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γ(τ) = φ1γ(τ − 1) + φ2γ(τ − 2), for τ = 3, 4, · · ·.

Autocorrelation Functions:

ρ(1) = φ1 + φ2ρ(1) =
φ1

1 − φ2
,

ρ(2) = φ1ρ(1) + φ2 =
φ2

1

1 − φ2
+ φ2,

ρ(τ) = φ1ρ(τ − 1) + φ2ρ(τ − 2), for τ = 3, 4, · · ·.

φ1,1 = ρ(1) =
φ1

1 − φ2

φ2,2 =

∣∣∣∣∣∣
1 ρ(1)

ρ(1) ρ(2)

∣∣∣∣∣∣
∣∣∣∣∣∣

1 ρ(1)

ρ(1) 1

∣∣∣∣∣∣
=
ρ(2) − ρ(1)2

1 − ρ(1)2 = φ2
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φ3,3 =

∣∣∣∣∣∣∣∣∣∣

1 ρ(1) ρ(1)

ρ(1) 1 ρ(2)

ρ(2) ρ(1) ρ(3)

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

1 ρ(1) ρ(2)

ρ(1) 1 ρ(1)

ρ(2) ρ(1) 1

∣∣∣∣∣∣∣∣∣∣

=
(ρ(3) − ρ(1)ρ(2)) − ρ(1)2(ρ(3) − ρ(1)) + ρ(2)ρ(1)(ρ(2) − 1)

(1 − ρ(1)2) − ρ(1)2(1 − ρ(2)) + ρ(2)(ρ(1)2 − ρ(2))
= 0.

8. Log-Likelihood Function — Innovation Form:

log f (yT , · · · , y1) = log f (y2, y1) +

T∑

t=3

log f (yt|yt−1, · · · , y1)

where

f (y2, y1) =
1

2π

∣∣∣∣∣∣
γ(0) γ(1)

γ(1) γ(0)

∣∣∣∣∣∣
−1/2

exp

−
1
2

(y1 y2)
(
γ(0) γ(1)

γ(1) γ(0)

)−1 ( y1

y2

) ,
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f (yt|yt−1, · · · , y1) =
1√

2πσ2
ε

exp
(
− 1

2σ2
ε

(yt − φ1yt−1 − φ2yt−2)2
)
.

Note as follows:
(
γ(0) γ(1)

γ(1) γ(0)

)
= γ(0)

( 1 ρ(1)

ρ(1) 1

)
= γ(0)

( 1 φ1/(1 − φ2)

φ1/(1 − φ2) 1

)
.

9. AR(2) +drift: yt = µ + φ1yt−1 + φ2yt−2 + εt

Mean:

Rewriting the AR(2)+drift model,

φ(L)yt = µ + εt

where φ(L) = 1 − φ1L − φ2L2.

Under the stationarity assumption, we can rewrite the AR(2)+drift model as

follows:

yt = φ(L)−1µ + φ(L)−1εt.
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Therefore,

E(yt) = φ(L)−1µ + φ(L)−1E(εt) = φ(1)−1µ =
µ

1 − φ1 − φ2

Example: AR(p) model: Consider yt = φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt.

1. Variance of AR(p) Process:

Under the stationarity condition (i.e., the p solutions of x from φ(x) = 0 are

outside the unit circle),

γ(0) =
σ2
ε

1 − φ1ρ(1) − · · · − φpρ(p)
.

Note that γ(τ) = ρ(τ)γ(0).

Solve the following simultaneous equations for τ = 0, 1, · · · , p:

γ(τ) = E((yt − µ)(yt−τ − µ)) = E(ytyt−τ)
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=


φ1γ(τ − 1) + φ2γ(τ − 2) + · · · + φpγ(τ − p), for τ , 0,

φ1γ(τ − 1) + φ2γ(τ − 2) + · · · + φpγ(τ − p) + σ2
ε , for τ = 0.

2. Estimation of AR(p) Model:

1. OLS:

min
φ1, · · · , φp

T∑

t=p+1

(yt − φ1yt−1 − φ2yt−2 − · · · − φpyt−p)2

2. MLE:

max
φ1, · · · , φp

log f (yT , · · · , y1)

where

log f (yT , · · · , y1) = log f (yp, · · · , y2, y1) +

T∑

t=p+1

log f (yt|yt−1, · · · , y1),
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f (yp, · · · , y2, y1) = (2π)−p/2|V |−1/2 exp


−1

2
(y1 y2 · · · yp)V−1



y1

y2
...

yp





V = γ(0)



1 ρ(1) · · · ρ(p − 2) ρ(p − 1)

ρ(1) 1 ρ(p − 3) ρ(p − 2)
...

...
...

...

ρ(p − 1) ρ(p − 2) · · · ρ(1) 1



f (yt|yt−1, · · · , y1) =
1√

2πσ2
ε

exp
(
− 1

2σ2
ε

(yt − φ1yt−1 − φ2yt−2 − · · · − φpyt−p)2
)

3. Yule=Walker (ユール・ウォーカー) Equation:

Multiply yt−1, yt−2, · · ·, yt−p on both sides of yt = φ1yt−1 +φ2yt−2 + · · · +φpyt−p +
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εt = yt, take expectations for each case, and divide by the sample variance γ̂(0).



1 ρ̂(1) · · · ρ̂(p − 2) ρ̂(p − 1)

ρ̂(1) 1 ρ̂(p − 3) ρ̂(p − 2)
...

...
...

...

ρ̂(p − 1) ρ̂(p − 2) · · · ρ̂(1) 1





φ1

φ2
...

φp−1

φp



=



ρ̂(1)

ρ̂(2)
...

ρ̂(p)



where

γ̂(τ) =
1
T

T∑

t=τ+1

(yt − µ̂)(yt−τ − µ̂), ρ̂(τ) =
γ̂(τ)
γ̂(0)

.

3. AR(p) +drift: yt = µ + φ1yt−1 + φ2yt−2 + · · · φpyt−p + εt

Mean:

φ(L)yt = µ + εt
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where φ(L) = 1 − φ1L − φ2L2 − · · · − φpLp.

yt = φ(L)−1µ + φ(L)−1εt

Taking the expectation on both sides,

E(yt) = φ(L)−1µ + φ(L)−1E(εt) = φ(1)−1µ

=
µ

1 − φ1 − φ2 − · · · − φp

4. Partial Autocorrelation of AR( p) Process:

φk,k = 0 for k = p + 1, p + 2, · · ·.
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