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Consider the following regression model:

y=XB+u u~N(0,0°L,),

where y and u denote n x 1 vectors,  indicates a k x 1 vector, and X represents a n x k matrix. The

explanatory variable X is assumed to be independent of the error term u. Answer the following

questions.

(1)

We estimate § by OLS (ordinary least squares method). Set up th eoptimization problem
and derive the OLS estimator of j.
Solution:

The optimization problem is given by

max 5(8),

where S(8) = (y — X8)'(y — X3). We denote the OLS estimator by B. Then, the first order
condition is:
VsS(B) =0
— 2X'(y—XB)=0.

Solving this equation, we have the OLS estimator:

B=(X'X)"'Xy.

We estimate 8 by MLE (maximization likelihood estimation method). Obtain the likelihood
function and derive the ML estimator of 5.

Solution:

The assumption u ~ N(0,021,,) implies that the error term u; is independently and identically

distributed for ¢ = 1,--- ,n. Then, the joint density of u;, 1 =1,--- ,n is given by

flugi=1,---,n) =Hf(ui>




Using the change of variables method, we obtain the likelihood function L(6):

n

2(6) = T g o0 { ~51a s — 382}

=1

where 0 := (8’,0%)" € RF¥*! indicates the parameter vector and z; is a 1 x k vector. Taking

a logarithm, we have the log-likelihood function:

n

n n 1
log L(0) = —3 log(27) — 3 log(c?) — 257 (yi — ziB)>.

i=1
Then, we consider the following optimization problem:

max log L(6).

Denoting the ML estimator by 0 = (B’ ,2), the first order conditions are:

Vo log L(0) = (vviigg L;(;)) —0.

Solving these conditions, we have the ML estimator: !

(3) We estimate 8 by MM (method of moment). Set up the problem and derive the MM estimator
of 3.

Solution:

Since X is independent of u, we have the following orthogonality condition:
E[X'u] = 0.
Thus, the MM estimator /3 satisfies the following condition:
1 &, 1 &, —
;Zwluz =0 < EZml(yl —xz;0) =0.
=1 i=1
Arranging this expression, we have the MM estimator:

B=(X'X)"1X"y.

1t is sufficient to obtain the estimator of 8. However, the first order conditions are the system of equations
that the estimator must satisfy. Therefore, you need to show the first order conditions in terms of 8 and 2.



Consider the following regression model:

y=XB+u u~N(0,0°L,),

where y and u denote n x 1 vectors, 3 indicates a k x 1 vector, and X represents a n x k matrix.

The explanatory variable X is assumed to be correlated with error term u. Answer the following

questions.

(4) Show that the OLS estimator, denoted by B, is inconsistent.

Solution:

The OLS estimator is expressed as follows:

B=B+(X'X)"'X"u

1 & e
- — L — Tars
=08+ (n ;x1x1> (n ;xﬂ%) .

By the Law of Large Numbers,

1 n
- Zx;xz —L  Elr/a] = My,
n &

n— oo

1 n
- Zx;uz _r, E[z'u] =: My, # 0,

n—oo

where M, # 0 since z; is correlated with u;. By the continuous mapping theorem, we have

—1
~ 1 & 1 — P _
s () (1) o s o
i=1 i=1

which concludes that B is inconsistent.

Suppose that Z (i.e., n X r matrix for r > k) is independent of w but it is highly correlated
with X. Using the instrumental variableZ, derive the GMM (generalized method of moment)
estimator, denoted by B

Solution:

Since Z is independent of u, we have the orthogonality condition:
E[Z'u] =

And, its empirical counterpart is:

n

nZz; yi —x;8) = 0.

i=1
Since this is the case of an over identification, i.e., r > k, we solve the following minimization

problem:

3\>—‘

o [155 0

:mﬁin (y—XB)ZWZ' (y — X),

3 m]

i=1



where W is the inverse matrix of the variance-covariance matrix of Z'(y — X 8) = Z'u, which
is given by
Var(Z'u) = E[Z'uwu'Z]
= Z'Eluu'1Z
=0°7'Z.
Therefore, the problem becomes:
mﬁin (y—XpB)2Z(Z'2)' 7' (y — XB),

2 since it is a constant and does not affect a solution. We define as

S(B):=(y—XB)'Z(Z'Z)"1Z'(y — X3), then the first order condition is:

where we ignore o

V5S(3) = 0.
Solving this condition, we obtain the GMM estimator:

G=[X'2(Z2) ' 2X]" X' 2(2'2)"' 2'y.

Show that the GMM estimator 3 is consistent and asymptotically normal.
Solution:

The GMM estimator B is expressed as

n n -1 n -t n n -1 n
B=p8+ lz::r'z (122',2) lZ:z'ac lz:ﬂ’z (122',2) lZz’u
n 4 [2ad n 4 17 n 4 [ n 4 [%ad n 4 171 n 4 7 W
i=1 i=1 =1 i=1 i=1 i=1
By the Law of Large Numbers, we have:

1 < P
=Y w2z —— E[a'z] = M,,
K3 Y
n — n—o00
1=
n—oo

1 n
- E 2z —— E['2] = M,,,
n

i=1

1 n
fz,zéul —E  E[u] =0.
n

n—oo
i=1
By the continuous mapping theorem,
= P _ ~1 _
B—— Bt (MMM ) MyMZ' 0=,

which concludes that the GMM estimator 3 is a consistent estimator of 3. Next, we will show

the asymptotic normality of B. Arranging the expression above, we have:

n n -1 n -1 n n -1 n



Note that the expectation and the variance of ﬁ St 2lu; are 0 and 02Z'Z, respectively.

i=1%i
Thus, by the Central Limit Theorem,

n—oo

1 ¢ ’ d 2
— g ziu; —— N(0,0°M,,).
V=

Therefore, using the Law of Large Numbers, the continuous mapping theorem, and the Slutsky

theorem, we obtain the asymptotic normality of B:
5 d _ _
Vi (B=8) = N (0,02 (Me M ML),
n—oo
where the asymptotic variance-covariance matrix of 1/n (5 — B) is obtained as follows:

Var (\/ﬁ (B - B)) L (MrzMzilea/cz)ilezM;zl(UzMZZ)Mzle;z(MzzM;le;z)71

n—oo

=o*(M,, MM )~

We need to choose either OLS or GMM. Explain how we choose one of the estimators.
Solution:
To decide which estimators we use, we need to test whether the orthogonality condition, i.e.,

E[Z'u] = 0 is correct. The null and alternative hypotheses are:
Hy :E[Z'u] = 0;
H, :E[Z'u] #0.

Since the number of equations is r and that of parameter is k, the statistic below asymptoti-

cally follows a x2 distribution with  — k degrees of freedom.

/ —1
1 n o - 1 n - 1 n o 4 )
<\/ﬁ ; ziul> Var (ﬁ Z zluz>] <\/ﬁ lzzl ziuz> —>”_mo X (r — k),

where @; = y; — X3 and Var (ﬁ S zﬁz) is the estimator of Var (ﬁ S z{uz) If we

do not reject Hp, we then choose the GMM estimator since the orthogonality condition is

likely to be correct.



3 | Consider the AR(1) model:

Yo = QYi—1 + € €~ N(an—z)a

fort=1,2,--- ,T, where €1, €9, - , er are mutually independent. Moreover, for simplicity, yg = 0

is assumed. Answer the following questions.

(8)

9)

For |¢| < 1, obtain the likelihood function in the innovation form.

Solution:
Using the Bayes’ rule, the joint distribution of yi1,ys2, - ,yr is written as
fisyes - yr) = flyrlyr—1, - y1) fya, v2, -+ yr—1)
T
= f(yl) H f(yt|yt—17 T 7y1)a
t=2
where f(y1) denotes an unconditional distribution of y; and f(y:|y:—1,- -+ ,y1) is a conditional

one of y;. Firstly, let us focus on the unconditional distribution. Using the initial condition

Yo = 0, we have y; = 1. Since €; ~ N(0,02), we apply the change of variables methods to

obtain: 2

Fn) = g exp (~ L2
= exp| —=— | .
a1 950 p 952
Then, we turn to consider the conditional distribution. Again, by the change of variables
method,

202

_ 2
Flonlyer--- ) = \/;T7€Xp{_(yt¢yt1)}.

Therefore, we obtain the likelihood function:

1 yi ) ool { (ye — ¢yt1)2}
L(6) = e -7 e — e S,
©) V2mo? P ( 202 t:HQ V2mo? P 202

where 0 := (¢,0%)" € R? is the parameter vector.

For |¢| < 1, obtain the variance-covariance matrix of y = (y1,y2, -+ ,yr). Next, obtain the
likelihood function of y, based on the variance-covariance matrix of y.

Solution:

Without the assumption yo = 0, the unconditional distribution of 41 would be given by

1 2
Fyp) = ———=exp{ -~ b
271'70‘2 213 2
1—o2 ¢



Firstly, we will derive the variance-covariance matrix of y. The variance of y¢, ¢t € {2,--- T},
denoted by ~(0), is:

7(0) = Var(ye)
=Var(e + per—1 + PPer o+ -)
=c’(1+¢*+¢* +--)

=1
Here, notice that we have the initial condition yg = 0, which implies y; = €¢;. Thus, for t =1,
we have:
Var(y,) = Var(e;) = 0.
The autocovarinance, denoted by (1) for 7 =1,2,---, is given by

(1) = E[(ye — ) (Ye—r — 1]

E[ytyt T]
E[(¢™yt—r + €t + d€t—1+ -+ &7 r€t—ri1)Yt—v]
#"(0)

- 0'2(]5T
=1 g
where p denotes the mean of y; and p = 0 for all £. Therefore, the variance-covariance matrix
of y is:
1— ¢2 ¢ ¢2 . ¢T—1
, o 1 o e T2
— __¢ 2 .. T-3
¢T71 ¢T72 ¢T73 .. 1

Using this matrix, we can define the likelihood function as follows:

1 1
L) = ——F—exp|—2 ’E_1>,
(0) enF e p( 5V Iy

where X denotes the variance-covariance matrix of y derived above.

(10) For |¢| < 1, show the following equality:

L¢80 Vi—@ 0\ (VI
o 1 o 1 —¢ 1 —¢
(bT_l ¢2 (b 1 0 1 —¢ 0




Solution:

The left hand side can be transformed as follows:

1 ¢ @ - P! 1 —¢ 0o --- 0

o 1 —¢ 1+¢* —¢ '
A A Bt B - . .0 )

: B : E s
T o P @ 1 0 0 —¢ 1

which is equal to the right hand side.

(11) For ¢ = 1, derive the autocovariance between y; and y;— .
Solution:

When ¢ = 1, this is the case of a random walk process. Then, we have

Yt = Yt—1 + €
:€t+€t—1+"'+61-

Thus, the autocovariance between y; and y;—,, denoted by ~(7), is:

V(1) = El(y: — 1)1 — p)]

= Elytyi—-]|
=El(e¢+e1+ - +teartearat-tea)lagrtearat - +e)
=Ele/ ] +Ele/_, 1]+ +E[]
2

(t—7).

(12) For ¢ =1, derive the asymptotic distribution of T(cgf 1).
Solution:

The OLS estimator of the model y; = ¢y;—1 + € is given by

T
(Z =¢+ M
B T )
Zt:l yt{l
which is arranged as follows:
T
(G gy = T2zt Y1
=25
T Zt:l Yi_1
T
s TG g) = TimYi

1 T ’
77 2i=1 Yi
We will derive the asymptotic distribution of the numerator % Zthl y¢—1€; and the denomi-

1 T 92
nator Zl,:l Yi—1-



(a) First, let us consider the numerator. Since y; = ¢dy;—1 + €; with ¢ = 1, we have:

yt2 = (yp—1 + 6t)2

1
— Yi—1€6 = 5(3/? - %271 - 6?)

Taking into account yy = 0,

T
ny 1€t = & Z(yf - yt2—1 - 6?)
t71
T
_ 2 1
=5Yr — ) €
t=1

Divided by T on both sides, we have:
T
1/ yr \>° 11 )
Lr a3 (L) -y
Since y; ~ N(0, 0%t), we obtain: 3
y 2
T 2
—— ] ~ 1).
(=) ~ew
Moreover, by the ergodicity, we have:
T
Z €; —> E[e?] = o2,

Therefore, by the continuous mapping theorem and the Slutsky theorem, we have the

asymptotic distribution of the numerator:

1
S Y o J 020 ).

(b) Second, we will derive the asymptotic distribution of the denominator - ZfT: LY. We
define Xr(r) as

0 0<r<iz,
€1 1 2
T T =7<7,
Xp()= Qe 2sr<d,
€1+---ter _
R r=1.

3In case of ¢ = 1, the expectation of y; is zero and the variance of it is given by
Var(y:) =Var(es+e—1+--+e€1) = o’t.

Then, y; ~ N(0,0°t).



Let [Tr] be the largest integer which is less than or equal to T x r. For instance, if

r =28 then [Tr] = [2.8] = 2. Using this operator, we can express X7 (r) as follows:
1 7]
Xr(r) = T t_zl €

= VIXr()= [Tr] r] F Z

For each part of them, we have

[T7]
T T—o00 "
T 1

W T—o00 W’

! Zet — . N(0,0%),

T—00

where we use the Central Limit Theorem for the third one. Therefore, by the Slutsky

theorem, we have:
VIX1(r) —= N(0,70%) = oW (r), (1)
— 00

where W (r) denotes a standard Brownian motion.

Since y; = € + -+ - + €1, Xp(r) can be expressed as follows:

0 0<r<,
Y 1 2
T T ST<7
Y2 2 <r< 3
T T = T
Xr(r) = | ’

Yyr—1 T—1

T Tosr<li
y _

e r=1

In addition, we define Sp(r) as follows:
1

0 0§T< T

2

y 1 2
T TST<T
2
£ 3<r<i

Sr(r) =4 " .

Vi T-1 oo
T T = g
2

y —

= r=1

To obtain fo Xr(r)dr and fo St (r)dr, we compute a sum of rectangulars as follows:

2 1 yr—1 (T T —1
/XT dr = T<TT)+“' T (TT)

Y1 Yyr—1
T
1
= ﬁzyta
t=1



(13)

and similarly,

T 1 T
/ST Z?Z EZT*ZJ?A-

t=1

Using equation (1) and the continuous mapping theorem,

/\FXT dr—>a/W

2
Since St (r) = (\/TXT(T)) , using the continuous mapping theorem, we obtain:
Sr(r) —— o*(W(r))?
1
= ST )dr —> 02/ (W (r))2dr,
—oo 0

which implies

1
7o ZJL LN 02/0 (W (r))2dr.

T—o0

Thus, we have obtained the asymptotic distribution of the denominator.

Therefore, from the discussion of (a) and (b), and using ¢ = 1, the continuous mapping

theorem and the Slutsky theorem, we have the asymptotic distribution of T((E —1) as follows:

% 23;1 Yi—1€¢ d % [(W(T))2 - 1] '

T(h—1) =
=y B yi T [H(W(r))2dr

We estimate Ay; = py;_1+¢€; using the conventional OLS command in econometric softwares.

The following results are obtained.

Ay = —0.09 y;—1
(1.90)

where the value in the parenthesis represents the t-value.

We want to test whether y; has a unit root. Show the null hypothesis and the alternative
one. Test whether y; has a unit root at 5 % significance level, where T = 1, 000.

Solution:

We use the augmented Dickey-Fuller test. Consider the model:
= Qyr—1 + €.
If the model has a unit root, then

Yt — Yt—1 = €
< Ayt = €¢,

11



where A is a difference operator. This implies that y;—1 does not have any effects on Ay,

when ¢ = 1. Therefore, we consider the model:

Ay = pys—1 + €,

and test whether p = 0 or not. Then, the null hypothesis and the alternative one are:

Hy:p=0;
H1 p < 0.
The test statistic is given by
t= P
SE(p)’

where SE(p) denotes the standard error of p. Referring to the ¢ statistic table of the Dickey-
Fuller test, the rejecting area is {¢ : t < —2.86} when 7' = 1,000 and the significance level is
5%. Since the t value is 1.90, we do not reject the null hypothesis that y; has a unit root at

5% significance level.

12



When y! is unobservable and y; is observed, consider the following model:

Y = xiff + u

1 ify >0
Yi =
0 otherwise

where x; is not correlated with u; for i = 1,2,--- ,n. We assume that u; for ¢ = 1,2,--- ,n are

mutually independently and normally distributed as u; ~ N(0,0?).

Answer the following questions.

(14)

(15)

What is the probability that y; is greater than zero? What is the probability that y; is less
than or equal to zero?
Solution:

The probability that y is greater than zero is:

B(y; > 0) = P(:B + u; > 0)

=P(u; > —x;5)
=P(u; > —x;8")
=1-F(-x;p7)
= F(x:6%),

where u} := u;/o and 8* := /0. F(-) denotes the cumulative distribution function of u},

which is given by

©f" 52

since u; ~ N(0,02). The last equality holds because of the symmetricity of F(-). The

probability that y; is less than or equal to zero is:

Ply; <0)=1-P(y; >0) =1- F(x;8%).

Derive the joint distribution of y1,y2, *+ , Yn.
Solution:

Since y; is a binary random variable, y; is considered to follow the Bernoulli distribution:

= [P(y; > 0))Y [1 —P(y} > 0)]' ¥
= [F(ml/ﬁ*)]yl [1 _ F(wlﬂ*)]lf?” .

13



We assume that y1, 92, -+ , ¥, are mutually independent. Then, the joint distribution of them

is given by

f(y17y2a"' 7yn) :Hf<yl)

= TL PG 1~ R

(16) We want to test the null hypothesis Hy : §; = 0 and the alternative one H; : 3; # 0, where
B; denotes the jth element of 8. We can consider several testing procedures. Explain one of
them.

Solution:

The null hypothesis and the alternative one are:

Hy : B3; = 0;
H1 : BJ 7& 0.

The t statistic is given by
SE(B;)

where SE(BJ-) denotes the standard error of Bj. The rejecting area is given by {t : |t| > 1.96}
when the significance level is 5%. Therefore, if the realized ¢ value is in the rejecting area, we

reject Hy and conclude that jth element of the explanatory variables has an effect on y;.

14



