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1 Consider the following regression model:

y = X� + u u ⇠ N (0,�2
In),

where y and u denote n⇥1 vectors, � indicates a k⇥1 vector, and X represents a n⇥k matrix. The

explanatory variable X is assumed to be independent of the error term u. Answer the following

questions.

(1) We estimate � by OLS (ordinary least squares method). Set up th eoptimization problem

and derive the OLS estimator of �.

Solution:

The optimization problem is given by

max
�

S(�),

where S(�) = (y �X�)0(y �X�). We denote the OLS estimator by b�. Then, the first order

condition is:

r�S(b�) = 0

() 2X 0(y �X b�) = 0.

Solving this equation, we have the OLS estimator:

b� = (X 0
X)�1

X
0
y.

(2) We estimate � by MLE (maximization likelihood estimation method). Obtain the likelihood

function and derive the ML estimator of �.

Solution:

The assumption u ⇠ N (0,�2
In) implies that the error term ui is independently and identically

distributed for i = 1, · · · , n. Then, the joint density of ui, i = 1, · · · , n is given by

f(ui, i = 1, · · · , n) =
nY

i=1

f(ui)

=
nY

i=1

1p
2⇡�2

exp

✓
� u

2
i

2�2

◆
.
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Using the change of variables method, we obtain the likelihood function L(✓):

L(✓) =
nY

i=1

1p
2⇡�2

exp

⇢
� 1

2�2
(yi � xi�)

2

�
,

where ✓ := (�0
,�

2)0 2 Rk+1 indicates the parameter vector and xi is a 1 ⇥ k vector. Taking

a logarithm, we have the log-likelihood function:

logL(✓) = �n

2
log(2⇡)� n

2
log(�2)� 1

2�2

nX

i=1

(yi � xi�)
2
.

Then, we consider the following optimization problem:

max
✓

logL(✓).

Denoting the ML estimator by ✓̃ := (�̃0
, �̃

2), the first order conditions are:

r✓ logL(✓̃) =

 
r� logL(✓̃)

r�2 logL(✓̃)

!
= 0.

Solving these conditions, we have the ML estimator: 1

�̃ = (X 0
X)�1

X
0
y,

�̃
2 =

1

n
(y �X�̃)0(y �X�̃).

(3) We estimate � by MM (method of moment). Set up the problem and derive the MM estimator

of �.

Solution:

Since X is independent of u, we have the following orthogonality condition:

E[X 0
u] = 0.

Thus, the MM estimator � satisfies the following condition:

1

n

nX

i=1

x
0
iui = 0 () 1

n

nX

i=1

x
0
i(yi � xi�) = 0.

Arranging this expression, we have the MM estimator:

� = (X 0
X)�1

X
0
y.

1
It is su�cient to obtain the estimator of �. However, the first order conditions are the system of equations

that the estimator must satisfy. Therefore, you need to show the first order conditions in terms of � and �2
.
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2 Consider the following regression model:

y = X� + u u ⇠ N (0,�2
In),

where y and u denote n⇥ 1 vectors, � indicates a k ⇥ 1 vector, and X represents a n⇥ k matrix.

The explanatory variable X is assumed to be correlated with error term u. Answer the following

questions.

(4) Show that the OLS estimator, denoted by b�, is inconsistent.
Solution:

The OLS estimator is expressed as follows:

b� = � + (X 0
X)�1

X
0
u

= � +

 
1

n

nX

i=1

x
0
ixi

!�1 
1

n

nX

i=1

x
0
iui

!
.

By the Law of Large Numbers,

1

n

nX

i=1

x
0
ixi

P����!
n!1

E[x0
x] =: Mxx,

1

n

nX

i=1

x
0
iui

P����!
n!1

E[x0
u] =: Mxu 6= 0,

where Mxu 6= 0 since xi is correlated with ui. By the continuous mapping theorem, we have

b� = � +

 
1

n

nX

i=1

x
0
ixi

!�1 
1

n

nX

i=1

x
0
iui

!
P����!

n!1
� +M

�1
xx Mxu 6= �,

which concludes that b� is inconsistent.

(5) Suppose that Z (i.e., n ⇥ r matrix for r > k) is independent of u but it is highly correlated

with X. Using the instrumental variableZ, derive the GMM (generalized method of moment)

estimator, denoted by �̃.

Solution:

Since Z is independent of u, we have the orthogonality condition:

E[Z 0
u] = 0.

And, its empirical counterpart is:

1

n

nX

i=1

z
0
i(yi � xi�) = 0.

Since this is the case of an over identification, i.e., r > k, we solve the following minimization

problem:

min
�

"
1

n

nX

i=1

z
0
i(yi � xi�)

#0
W

"
1

n

nX

i=1

z
0
i(yi � xi�)

#

=min
�

(y �X�)0ZWZ
0(y �X�),
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where W is the inverse matrix of the variance-covariance matrix of Z 0(y�X�) = Z
0
u, which

is given by

V ar(Z 0
u) = E[Z 0

uu
0
Z]

= Z
0E[uu0]Z

= �
2
Z

0
Z.

Therefore, the problem becomes:

min
�

(y �X�)0Z(Z 0
Z)�1

Z
0(y �X�),

where we ignore �
2 since it is a constant and does not a↵ect a solution. We define as

S(�) := (y �X�)0Z(Z 0
Z)�1

Z
0(y �X�), then the first order condition is:

r�S(�̃) = 0.

Solving this condition, we obtain the GMM estimator:

�̃ =
⇥
X

0
Z(Z 0

Z)�1
Z

0
X
⇤�1

X
0
Z(Z 0

Z)�1
Z

0
y.

(6) Show that the GMM estimator �̃ is consistent and asymptotically normal.

Solution:

The GMM estimator �̃ is expressed as

�̃ = � +

2

4 1

n

nX

i=1

x
0
izi

 
1

n

nX

i=1

z
0
izi

!�1
1

n

nX

i=1

z
0
ixi

3

5
�1

1

n

nX

i=1

x
0
izi

 
1

n

nX

i=1

z
0
izi

!�1
1

n

nX

i=1

z
0
iui

By the Law of Large Numbers, we have:

1

n

nX

i=1

x
0
izi

P����!
n!1

E[x0
z] =: Mxz,

1

n

nX

i=1

z
0
izi

P����!
n!1

E[z0z] =: Mzz,

1

n

nX

i=1

z
0
iui

P����!
n!1

E[z0u] = 0.

By the continuous mapping theorem,

�̃
P����!

n!1
� +

�
MxzM

�1
zz M

0
xz

��1
MxzM

�1
zz · 0 = �,

which concludes that the GMM estimator �̃ is a consistent estimator of �. Next, we will show

the asymptotic normality of �̃. Arranging the expression above, we have:

p
n

⇣
�̃ � �

⌘
=

2

4 1

n

nX

i=1

x
0
izi

 
1

n

nX

i=1

z
0
izi

!�1
1

n

nX

i=1

z
0
ixi

3

5
�1

1

n

nX

i=1

x
0
izi

 
1

n

nX

i=1

z
0
izi

!�1
1p
n

nX

i=1

z
0
iui.
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Note that the expectation and the variance of 1p
n

Pn
i=1 z

0
iui are 0 and �

2
Z

0
Z, respectively.

Thus, by the Central Limit Theorem,

1p
n

nX

i=1

z
0
iui

d����!
n!1

N (0,�2
Mzz).

Therefore, using the Law of Large Numbers, the continuous mapping theorem, and the Slutsky

theorem, we obtain the asymptotic normality of �̃:

p
n

⇣
�̃ � �

⌘
d����!

n!1
N
�
0,�2(MxzM

�1
zz M

0
xz)

�1
�
,

where the asymptotic variance-covariance matrix of
p
n

⇣
�̃ � �

⌘
is obtained as follows:

V ar

⇣p
n

⇣
�̃ � �

⌘⌘ P����!
n!1

(MxzM
�1
zz M

0
xz)

�1
MxzM

�1
zz (�2

Mzz)M
�1
zz M

0
xz(MxzM

�1
zz M

0
xz)

�1

= �
2(MxzM

�1
zz M

0
xz)

�1
.

(7) We need to choose either OLS or GMM. Explain how we choose one of the estimators.

Solution:

To decide which estimators we use, we need to test whether the orthogonality condition, i.e.,

E[Z 0
u] = 0 is correct. The null and alternative hypotheses are:

8
<

:
H0 : E[Z 0

u] = 0;

H1 : E[Z 0
u] 6= 0.

Since the number of equations is r and that of parameter is k, the statistic below asymptoti-

cally follows a �
2 distribution with r � k degrees of freedom.

 
1p
n

nX

i=1

z
0
ibui

!0 "
dV ar

 
1p
n

nX

i=1

z
0
ibui

!#�1 
1p
n

nX

i=1

z
0
ibui

!
d����!

n!1
�
2(r � k),

where bui = yi �X�̃ and dV ar

⇣
1p
n

Pn
i=1 z

0
ibui

⌘
is the estimator of V ar

⇣
1p
n

Pn
i=1 z

0
iui

⌘
. If we

do not reject H0, we then choose the GMM estimator since the orthogonality condition is

likely to be correct.
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3 Consider the AR(1) model:

yt = �yt�1 + ✏t ✏t ⇠ N (0,�2),

for t = 1, 2, · · · , T , where ✏1, ✏2, · · · , ✏T are mutually independent. Moreover, for simplicity, y0 = 0

is assumed. Answer the following questions.

(8) For |�| < 1, obtain the likelihood function in the innovation form.

Solution:

Using the Bayes’ rule, the joint distribution of y1, y2, · · · , yT is written as

f(y1, y2, · · · , yT ) = f(yT |yT�1, · · · , y1)f(y1, y2, · · · , yT�1)

...

= f(y1)
TY

t=2

f(yt|yt�1, · · · , y1),

where f(y1) denotes an unconditional distribution of y1 and f(yt|yt�1, · · · , y1) is a conditional

one of yt. Firstly, let us focus on the unconditional distribution. Using the initial condition

y0 = 0, we have y1 = ✏1. Since ✏1 ⇠ N (0,�2), we apply the change of variables methods to

obtain: 2

f(y1) =
1p
2⇡�2

exp

✓
� y

2
1

2�2

◆
.

Then, we turn to consider the conditional distribution. Again, by the change of variables

method,

f(yt|yt�1. · · · , y1) =
1p
2⇡�2

exp

⇢
� (yt � �yt�1)2

2�2

�
.

Therefore, we obtain the likelihood function:

L(✓) =
1p
2⇡�2

exp

✓
� y

2
1

2�2

◆ TY

t=2

1p
2⇡�2

exp

⇢
� (yt � �yt�1)2

2�2

�
,

where ✓ := (�,�2)0 2 R2 is the parameter vector.

(9) For |�| < 1, obtain the variance-covariance matrix of y = (y1, y2, · · · , yT )0. Next, obtain the

likelihood function of y, based on the variance-covariance matrix of y.

Solution:

2
Without the assumption y0 = 0, the unconditional distribution of y1 would be given by

f(y1) =
1q

2⇡ �2

1��2

exp

(
� y2

1

2
�2

1��2

)
.
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Firstly, we will derive the variance-covariance matrix of y. The variance of yt, t 2 {2, · · · , T},
denoted by �(0), is:

�(0) = V ar(yt)

= V ar(✏t + �✏t�1 + �
2
✏t�2 + · · · )

= �
2(1 + �

2 + �
4 + · · · )

=
�
2

1� �2
.

Here, notice that we have the initial condition y0 = 0, which implies y1 = ✏1. Thus, for t = 1,

we have:

V ar(y1) = V ar(✏1) = �
2
.

The autocovarinance, denoted by �(⌧) for ⌧ = 1, 2, · · · , is given by

�(⌧) = E[(yt � µ)(yt�⌧ � µ)]

= E[ytyt�⌧ ]

= E[(�⌧
yt�⌧ + ✏t + �✏t�1 + · · ·+ �

⌧�1
✏t�⌧+1)yt�⌧ ]

= �
⌧
�(0)

=
�
2
�
⌧

1� �2
,

where µ denotes the mean of yt and µ = 0 for all t. Therefore, the variance-covariance matrix

of y is:

⌃ := V ar(y) =
�
2

1� �2

0

BBBBBBB@

1� �
2

� �
2 · · · �

T�1

� 1 � · · · �
T�2

�
2

� 1 · · · �
T�3

...
...

...
. . .

...

�
T�1

�
T�2

�
T�3 · · · 1

1

CCCCCCCA

Using this matrix, we can define the likelihood function as follows:

L(✓) =
1

(2⇡)
T
2 |⌃| 12

exp

✓
�1

2
y
0⌃�1

y

◆
,

where ⌃ denotes the variance-covariance matrix of y derived above.

(10) For |�| < 1, show the following equality:

0

BBBBBBBBB@

1 � �
2 · · · �

T�1

� 1
. . .

. . .
...

�
2 . . .

. . .
. . . �

2

...
. . .

. . .
. . . �

�
T�1 · · · �

2
� 1

1

CCCCCCCCCA

=

0

BBBBBBBB@

0

BBBBBBB@

p
1� �2 0

1 ��

1 ��

. . .
. . .

0 1 ��

1

CCCCCCCA

00

BBBBBBB@

p
1� �2 0

1 ��

1 ��

. . .
. . .

0 1 ��

1

CCCCCCCA

1

CCCCCCCCA

�1
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Solution:

The left hand side can be transformed as follows:

0

BBBBBBBBB@

1 � �
2 · · · �

T�1

� 1
. . .

. . .
...

�
2 . . .

. . .
. . . �

2

...
. . .

. . .
. . . �

�
T�1 · · · �

2
� 1

1

CCCCCCCCCA

=

0

BBBBBBBBB@

1 �� 0 · · · 0

�� 1 + �
2 ��

. . .
...

0 ��
. . .

. . . 0
...

. . .
. . .

. . . ��

0 · · · 0 �� 1

1

CCCCCCCCCA

�1

,

which is equal to the right hand side.

(11) For � = 1, derive the autocovariance between yt and yt�⌧ .

Solution:

When � = 1, this is the case of a random walk process. Then, we have

yt = yt�1 + ✏t

= ✏t + ✏t�1 + · · ·+ ✏1.

Thus, the autocovariance between yt and yt�⌧ , denoted by �(⌧), is:

�(⌧) = E[(yt � µ)(yt�⌧ � µ)]

= E[ytyt�⌧ ]

= E[(✏t + ✏t�1 + · · ·+ ✏t�⌧ + ✏t�⌧�1 + · · ·+ ✏1)(✏t�⌧ + ✏t�⌧�1 + · · ·+ ✏1)]

= E[✏2t�⌧ ] + E[✏2t�⌧�1] + · · ·+ E[✏21]

= �
2(t� ⌧).

(12) For � = 1, derive the asymptotic distribution of T (b�� 1).

Solution:

The OLS estimator of the model yt = �yt�1 + ✏t is given by

b� = �+

PT
t=1 yt�1✏tPT
t=1 y

2
t�1

,

which is arranged as follows:

(b�� �) =
1
T

PT
t=1 yt�1✏t

1
T

PT
t=1 y

2
t�1

() T (b�� �) =
1
T

PT
t=1 yt�1✏t

1
T 2

PT
t=1 y

2
t�1

.

We will derive the asymptotic distribution of the numerator 1
T

PT
t=1 yt�1✏t and the denomi-

nator 1
T 2

PT
t=1 y

2
t�1.
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(a) First, let us consider the numerator. Since yt = �yt�1 + ✏t with � = 1, we have:

y
2
t = (yt�1 + ✏t)

2

() yt�1✏t =
1

2
(y2t � y

2
t�1 � ✏

2
t ).

Taking into account y0 = 0,

TX

t=1

yt�1✏t =
1

2

TX

t=1

(y2t � y
2
t�1 � ✏

2
t )

=
1

2
y
2
T � 1

2

TX

t=1

✏
2
t .

Divided by �
2
T on both sides, we have:

1

�2

1

T

TX

t=1

yt�1✏t =
1

2

✓
yT

�
p
T

◆2

� 1

2�2

1

T

TX

t=1

✏
2
t .

Since yt ⇠ N (0,�2
t), we obtain: 3

✓
yT

�
p
T

◆2

⇠ �
2(1).

Moreover, by the ergodicity, we have:

1

T

TX

t=1

✏
2
t

P����!
T!1

E[✏2t ] = �
2
.

Therefore, by the continuous mapping theorem and the Slutsky theorem, we have the

asymptotic distribution of the numerator:

1

�2

1

T

TX

t=1

yt�1✏t
d����!

T!1

1

2

�
�
2(1)� 1

�
.

(b) Second, we will derive the asymptotic distribution of the denominator 1
T 2

PT
t=1 y

2
t�1. We

define XT (r) as

XT (r) =

8
>>>>>>>>>><

>>>>>>>>>>:

0 0  r <
1
T ,

✏1
T

1
T  r <

2
T ,

✏1+✏2
T

2
T  r <

3
T ,

...
...

✏1+···+✏T
T r = 1.

3
In case of � = 1, the expectation of yt is zero and the variance of it is given by

V ar(yt) = V ar(✏t + ✏t�1 + · · ·+ ✏1) = �2t.

Then, yt ⇠ N (0,�2t).
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Let [Tr] be the largest integer which is less than or equal to T ⇥ r. For instance, if

r = 2.8
T , then [Tr] = [2.8] = 2. Using this operator, we can express XT (r) as follows:

XT (r) =
1

T

[Tr]X

t=1

✏t

()
p
TXT (r) =

[Tr]

T

s
T

[Tr]

1p
[Tr]

[Tr]X

t=1

✏t.

For each part of them, we have

[Tr]

T
����!
T!1

r,

s
T

[Tr]
����!
T!1

1p
r
,

1p
[Tr]

[Tr]X

t=1

✏t
d����!

T!1
N (0,�2),

where we use the Central Limit Theorem for the third one. Therefore, by the Slutsky

theorem, we have:
p
TXT (r)

d����!
T!1

N (0, r�2) = �W (r), (1)

where W (r) denotes a standard Brownian motion.

Since yt = ✏t + · · ·+ ✏1, XT (r) can be expressed as follows:

XT (r) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

0 0  r <
1
T ,

y1

T
1
T  r <

2
T ,

y2

T
2
T  r <

3
T ,

...
...

yT�1

T
T�1
T  r < 1,

yT

T r = 1.

In addition, we define ST (r) as follows:

ST (r) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

0 0  r <
1
T ,

y2
1
T

1
T  r <

2
T ,

y2
2
T

2
T  r <

3
T ,

...
...

y2
T�1

T
T�1
T  r < 1,

y2
T
T r = 1.

To obtain
R 1
0 XT (r)dr and

R 1
0 ST (r)dr, we compute a sum of rectangulars as follows:

Z 1

0
XT (r)dr ' y1

T

✓
2

T
� 1

T

◆
+ · · ·+ yT�1

T

✓
T

T
� T � 1

T

◆

=
y1

T 2
+ · · ·+ yT�1

T 2

' 1

T 2

TX

t=1

yt,
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and similarly,

Z 1

0
ST (r)dr ' 1

T 2

TX

t=1

y
2
t ' 1

T 2

TX

t=1

y
2
t�1.

Using equation (1) and the continuous mapping theorem,

Z 1

0

p
TXT (r)dr

d����!
T!1

�

Z 1

0
W (r)dr.

Since ST (r) =
⇣p

TXT (r)
⌘2

, using the continuous mapping theorem, we obtain:

ST (r)
d����!

T!1
�
2(W (r))2

()
Z 1

0
ST (r)dr

d����!
T!1

�
2

Z 1

0
(W (r))2dr,

which implies

1

T 2

TX

t=1

y
2
t�1

d����!
T!1

�
2

Z 1

0
(W (r))2dr.

Thus, we have obtained the asymptotic distribution of the denominator.

Therefore, from the discussion of (a) and (b), and using � = 1, the continuous mapping

theorem and the Slutsky theorem, we have the asymptotic distribution of T (b��1) as follows:

T (b�� 1) =
1
T

PT
t=1 yt�1✏t

1
T 2

PT
t=1 y

2
t�1

d����!
T!1

1
2

⇥
(W (r))2 � 1

⇤
R 1
0 (W (r))2dr

.

(13) We estimate �yt = ⇢yt�1+✏t using the conventional OLS command in econometric softwares.

The following results are obtained.

�yt = �0.09 yt�1

(1.90)

where the value in the parenthesis represents the t-value.

We want to test whether yt has a unit root. Show the null hypothesis and the alternative

one. Test whether yt has a unit root at 5 % significance level, where T = 1, 000.

Solution:

We use the augmented Dickey-Fuller test. Consider the model:

yt = �yt�1 + ✏t.

If the model has a unit root, then

yt � yt�1 = ✏t

() �yt = ✏t,
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where � is a di↵erence operator. This implies that yt�1 does not have any e↵ects on �yt

when � = 1. Therefore, we consider the model:

�yt = ⇢yt�1 + ✏t,

and test whether ⇢ = 0 or not. Then, the null hypothesis and the alternative one are:
8
<

:
H0 : ⇢ = 0;

H1 : ⇢ < 0.

The test statistic is given by

t =
b⇢

SE(b⇢) ,

where SE(b⇢) denotes the standard error of b⇢. Referring to the t statistic table of the Dickey-

Fuller test, the rejecting area is {t : t < �2.86} when T = 1, 000 and the significance level is

5%. Since the t value is 1.90, we do not reject the null hypothesis that yt has a unit root at

5% significance level.
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4 When y
⇤
i is unobservable and yi is observed, consider the following model:

y
⇤
i = xi� + ui

yi =

8
<

:
1 if y⇤i > 0

0 otherwise

where xi is not correlated with ui for i = 1, 2, · · · , n. We assume that ui for i = 1, 2, · · · , n are

mutually independently and normally distributed as ui ⇠ N (0,�2).

Answer the following questions.

(14) What is the probability that y⇤i is greater than zero? What is the probability that y⇤i is less

than or equal to zero?

Solution:

The probability that y⇤i is greater than zero is:

P(y⇤i > 0) = P(xi� + ui > 0)

= P(ui > �xi�)

= P(u⇤
i > �xi�

⇤)

= 1� F (�xi�
⇤)

= F (xi�
⇤),

where u
⇤
i := ui/� and �

⇤ := �/�. F (·) denotes the cumulative distribution function of u⇤
i ,

which is given by

F (xi�
⇤) =

Z xi�
⇤

�1

1p
2⇡

exp

✓
�z

2

2

◆
dz,

since ui ⇠ N (0,�2). The last equality holds because of the symmetricity of F (·). The

probability that y⇤i is less than or equal to zero is:

P(y⇤i  0) = 1� P(y⇤i > 0) = 1� F (xi�
⇤).

(15) Derive the joint distribution of y1, y2, · · · , yn.
Solution:

Since yi is a binary random variable, yi is considered to follow the Bernoulli distribution:

f(yi) = [P(yi = 1)]yi [1� P(yi = 1)]1�yi

= [P(y⇤i > 0)]yi [1� P(y⇤i > 0)]1�yi

= [F (xi�
⇤)]yi [1� F (xi�

⇤)]1�yi
.
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We assume that y1, y2, · · · , yn are mutually independent. Then, the joint distribution of them

is given by

f(y1, y2, · · · , yn) =
nY

i=1

f(yi)

=
nY

i=1

[F (xi�
⇤)]yi [1� F (xi�

⇤)]1�yi
.

(16) We want to test the null hypothesis H0 : �j = 0 and the alternative one H1 : �j 6= 0, where

�j denotes the jth element of �. We can consider several testing procedures. Explain one of

them.

Solution:

The null hypothesis and the alternative one are:
8
<

:
H0 : �j = 0;

H1 : �j 6= 0.

The t statistic is given by

t =
b�j

SE(b�j)
,

where SE(b�j) denotes the standard error of b�j . The rejecting area is given by {t : |t| > 1.96}
when the significance level is 5%. Therefore, if the realized t value is in the rejecting area, we

reject H0 and conclude that jth element of the explanatory variables has an e↵ect on yi.
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