「 Econometrics II」 Homework No. 1

Send your answer to tanizaki [at] econ.osaka-u.ac.jp by December 20, 2021.

1 Suppose that y_{i} takes $1,2, \cdots, n$ for $i=1,2, \cdots, T$, which is a discrete random variable. X_{i} is a vector of exogenous variables. n is assumed to be known.
(1) We assume that y_{i} is distributed as a binomial random variable with parameter p_{i} for $i=1,2, \cdots, T$. Consider estimating β with $p_{i}=F\left(X_{i} \beta\right)$, where $F(\cdot)$ has to be specified by a researcher. Representatively, a standard normal distribution function or a logistic distribution function is taken for $F(\cdot)$. Construct the likelihood function. Note that the binomial distribution is given by:

$$
f(x)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}
$$

(2) Obtain the first order condition for the maximum likelihood estimator of β.

2 Suppose that y_{i} takes one when the i th person says Yes in a questionnaire, while it takes zero when the i th person says No. X_{i} is a vector of exogenous variables. Using OLS, we consider estimating the following linear regression model:

$$
y_{i}=X_{i} \beta+u_{i}
$$

for $i=1,2, \cdots, n$.
(3) Focus on the left hand side, i.e., y_{i}. Show that $P\left(y_{i}=1\right)=\mathrm{E}\left(y_{i}\right)$, where $P\left(y_{i}=1\right)$ denotes the probability that y_{i} takes one.
(4) Focus on the right hand side, i.e., $X_{i} \beta+u_{i}$. Consider $\mathrm{E}\left(X_{i} \beta+u_{i}\right)$. From the regression model, $\mathrm{E}\left(y_{i}\right)=\mathrm{E}\left(X_{i} \beta+u_{i}\right)$ should hold. However, you feel something strange. What is the problem of the above regression model?
(5) Explain how we should estimate the regression model when we have the binary dependent variable.

3 Consider that n random variables $X_{1}, X_{2}, \cdots, X_{n}$ are mutually independently and identically distributed as the density function $f(x ; \theta)$, where θ is an unknown parameter to be estimated. For simplicity, θ is a scalar. Let $s(X)$ be an unbiased estimator of θ for $X=\left(X_{1}, X_{2}, \cdots, X_{n}\right)$.
(6) Suppose that $L(\theta ; x)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$, which is called the likelihood function. Show the following two equalities:

$$
\begin{aligned}
& \mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=0 \\
& -\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta^{2}}\right)=\mathrm{E}\left(\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)^{2}\right)=\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right) .
\end{aligned}
$$

(7) Show that the following inequality holds.

$$
\mathrm{V}(s(X)) \geq(I(\theta))^{-1}
$$

where $I(\theta)=-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta^{2}}\right)$, which is called Fisher's information matrix.
(8) Suppose that $s(X)=\tilde{\theta}$ is a maximum likelihood estimator. Then, show that

$$
\sqrt{n}(\tilde{\theta}-\theta) \longrightarrow N\left(0, \sigma^{2}\right),
$$

where $\sigma^{2}=\lim _{n \rightarrow \infty}\left(\frac{I(\theta)}{n}\right)^{-1}$.

