Econometrics I （Wed．，8：50－10：20）

Room \＃ 1 （法経講義棟）

Face－to－Face and Online Class
Video Recoding in Zoom（but we do not open．）
－This class is based on Statistics（統計，Wed 2 and Fri 3，Spring－Summer Term，『コア・テキスト 統計学』大屋 幸輔 著，新世社）and Econometrics（計量経済， Tue 1 and Thu 2，Fall－Winter Term，『計量経済学』山本拓著，新世社），which are provided by Department of Economics，and Basic Statistics（統計基礎，Tue 5， Spring－Summer Term，『コア・テキスト 統計学』大屋幸輔著，新世社），provided by Graduate School of Economics．

Thus，Statistics and Econometrics of undergraduate level are prerequisites．
－Furthermore，Special Lectures in Economics（Statistical Analysis）or Statistical Analysis（統計解析，Wed 2，Spring－Summer Term），provided by Graduate School of Economics，should be studied with this class．

Or，do self－study using the lecture notes of
http：／／www2．econ．osaka－u．ac．jp／～tanizaki／class／2012／econome1／index．htm （The notes are written in English with Japanese translation for econometrics terms）．

TA Session（Online）：

\longrightarrow Question－and－Answer Session，Not Lecture in This Term
TAs：Wang Xin（王 馨，オウ ケイ）
wx1184097947［at］yahoo．com
Zheng Xuzhu（鄭旭珠，テイキョクシュ）
zhengxuzhu＿u［at］yahoo．co．jp
Date：Thur．16：50－18：20
Zoom Info．：Meeting ID： 8538428522
Passcode：Keiryou1ta
Contents：Basic Statistics，Matrix Algebra，and etc．
Ask TAs directly in the TA session
if you have questions about class，homework and etc．

1 Regression Analysis（回帰分析）— Review

1．1 Setup of the Model

When $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$ are available，suppose that there is a linear rela－ tionship between y and x ，i．e．，

$$
\begin{equation*}
y_{i}=\beta_{1}+\beta_{2} x_{i}+u_{i}, \tag{1}
\end{equation*}
$$

for $i=1,2, \cdots, n . \quad x_{i}$ and y_{i} denote the i th observations．
\longrightarrow Single（or simple）regression model（単回帰モデル）
y_{i} is called the dependent variable（従属変数）or the explained variable（被説明変数），while x_{i} is known as the independent variable（独立変数）or the explanatory （or explaining）variable（説明変数）．

$$
\beta_{1}=\operatorname{Intercept}\left(\text { 切片) }, \quad \beta_{2}=\operatorname{Slope}(\text { 傾き })\right.
$$

β_{1} and β_{2} are unknown parameters（パラメータ，母数）to be estimated．
β_{1} and β_{2} are called the regression coefficients（回帰係数）．
u_{i} is the unobserved error term（誤差項）assumed to be a random variable with mean zero and variance σ^{2} ．
σ^{2} is also a parameter to be estimated．
x_{i} is assumed to be nonstochastic（非確率的），but y_{i} is stochastic（確率的）because y_{i} depends on the error u_{i} ．

The error terms $u_{1}, u_{2}, \cdots, u_{n}$ are assumed to be mutually independently and identi－ cally distributed，which is called iid．\longrightarrow discussed later．

It is assumed that u_{i} has a distribution with mean zero，i．e．， $\mathrm{E}\left(u_{i}\right)=0$ is assumed．

Taking the expectation on both sides of (1), the expectation of y_{i} is represented as:

$$
\begin{align*}
\mathrm{E}\left(y_{i}\right) & =\mathrm{E}\left(\beta_{1}+\beta_{2} x_{i}+u_{i}\right)=\beta_{1}+\beta_{2} x_{i}+\mathrm{E}\left(u_{i}\right) \\
& =\beta_{1}+\beta_{2} x_{i}, \tag{2}
\end{align*}
$$

for $i=1,2, \cdots, n . \quad$ Using $\mathrm{E}\left(y_{i}\right)$ we can rewrite (1) as $y_{i}=\mathrm{E}\left(y_{i}\right)+u_{i}$.
(2) represents the true regression line.

Let $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ be estimates of β_{1} and β_{2}.
Replacing β_{1} and β_{2} by $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$, (1) turns out to be:

$$
\begin{equation*}
y_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} x_{i}+e_{i}, \tag{3}
\end{equation*}
$$

for $i=1,2, \cdots, n$, where e_{i} is called the residual (残差).
The residual e_{i} is taken as the experimental value (or realization) of u_{i}.

We define \hat{y}_{i} as follows：

$$
\begin{equation*}
\hat{y}_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} x_{i}, \tag{4}
\end{equation*}
$$

for $i=1,2, \cdots, n$ ，which is interpreted as the predicted value（予測値）of y_{i} ．
（4）indicates the estimated regression line，which is different from（2）．

Moreover，using \hat{y}_{i} we can rewrite（3）as $y_{i}=\hat{y}_{i}+e_{i}$ ．
（2）and（4）are displayed in Figure 1.
Consider the case of $n=6$ for simplicity．\times indicates the observed data series．

The true regression line（2）is represented by the solid line，while the estimated re－ gression line（4）is drawn with the dotted line．

Based on the observed data，β_{1} and β_{2} are estimated as：$\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ ．

Figure 1．True and Estimated Regression Lines（回帰直線）

In the next section，we consider how to obtain the estimates of β_{1} and β_{2} ，i．e．，$\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ ．

1．2 Ordinary Least Squares Estimation

Suppose that $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$ are available．
For the regression model（1），we consider estimating β_{1} and β_{2} ．
Replacing β_{1} and β_{2} by their estimates $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ ，remember that the residual e_{i} is given by：

$$
e_{i}=y_{i}-\hat{y}_{i}=y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}
$$

The sum of squared residuals is defined as follows：

$$
S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)^{2} .
$$

It might be plausible to choose the $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ which minimize the sum of squared residuals，i．e．，$S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$ ．
This method is called the ordinary least squares estimation（最小二乗法，OLS）．

To minimize $S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$ with respect to $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$, we set the partial derivatives equal to zero:

$$
\begin{aligned}
& \frac{\partial S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)}{\partial \hat{\beta}_{1}}=-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)=0 \\
& \frac{\partial S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)}{\partial \hat{\beta}_{2}}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)=0
\end{aligned}
$$

The second order condition for minimization is:

$$
\left(\begin{array}{ll}
\frac{\partial^{2} S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)}{\partial \hat{\beta}_{1}^{2}} & \frac{\partial^{2} S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)}{\partial \hat{\beta}_{1} \partial \hat{\beta}_{2}} \\
\frac{\partial^{2} S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)}{\partial \partial \hat{\beta}_{2} \hat{\beta}_{1}} & \frac{\partial^{2} S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)}{\partial \hat{\beta}_{2}^{2}}
\end{array}\right)=\left(\begin{array}{cc}
2 n & 2 \sum_{i=1}^{n} x_{i} \\
2 \sum_{i=1}^{n} x_{i} & 2 \sum_{i=1}^{n} x_{i}^{2}
\end{array}\right)
$$

should be a positive definite matrix.
The diagonal elements $2 n$ and $2 \sum_{i=1}^{n} x_{i}^{2}$ are positive.
The determinant:

$$
\left|\begin{array}{cc}
2 n & 2 \sum_{i=1}^{n} x_{i} \\
2 \sum_{i=1}^{n} x_{i} & 2 \sum_{i=1}^{n} x_{i}^{2}
\end{array}\right|=4 n \sum_{i=1}^{n} x_{i}^{2}-4\left(\sum_{i=1}^{n} x_{i}\right)^{2}=4 n \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

is positive. \Longrightarrow The second-order condition is satisfied.

The first two equations yield the following two equations:

$$
\begin{align*}
& \bar{y}=\hat{\beta}_{1}+\hat{\beta}_{2} \bar{x}, \tag{5}\\
& \sum_{i=1}^{n} x_{i} y_{i}=n \bar{x} \hat{\beta}_{1}+\hat{\beta}_{2} \sum_{i=1}^{n} x_{i}^{2}, \tag{6}
\end{align*}
$$

where $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$ and $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.
Multiplying (5) by $n \bar{x}$ and subtracting (6), we can derive $\hat{\beta}_{2}$ as follows:

$$
\begin{equation*}
\hat{\beta}_{2}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \overline{x y}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} . \tag{7}
\end{equation*}
$$

From (5), $\hat{\beta}_{1}$ is directly obtained as follows:

$$
\begin{equation*}
\hat{\beta}_{1}=\bar{y}-\hat{\beta}_{2} \bar{x} . \tag{8}
\end{equation*}
$$

When the observed values are taken for y_{i} and x_{i} for $i=1,2, \cdots, n$ ，we say that $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are called the ordinary least squares estimates（or simply the least squares estimates，最小二乗推定値）of β_{1} and β_{2} ．

When y_{i} for $i=1,2, \cdots, n$ are regarded as the random sample，we say that $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are called the ordinary least squares estimators（or the least squares estimators，最小二乗推定量）of β_{1} and β_{2} ．

1．3 Properties of Least Squares Estimator

Equation（7）is rewritten as：

$$
\begin{align*}
\hat{\beta}_{2} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}-\frac{\bar{y} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& =\sum_{i=1}^{n} \frac{x_{i}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} y_{i}=\sum_{i=1}^{n} \omega_{i} y_{i} . \tag{9}
\end{align*}
$$

In the third equality, $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0$ is utilized because of $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.
In the fourth equality, ω_{i} is defined as: $\omega_{i}=\frac{x_{i}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$.
ω_{i} is nonstochastic because x_{i} is assumed to be nonstochastic.
ω_{i} has the following properties:

$$
\begin{gather*}
\sum_{i=1}^{n} \omega_{i}=\sum_{i=1}^{n} \frac{x_{i}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=0, \tag{10}\\
\sum_{i=1}^{n} \omega_{i} x_{i}=\sum_{i=1}^{n} \omega_{i}\left(x_{i}-\bar{x}\right)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=1, \tag{11}\\
\sum_{i=1}^{n} \omega_{i}^{2}=\sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}}=\frac{1}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} . \tag{12}
\end{gather*}
$$

The first equality of (11) comes from (10).

From now on, we focus only on $\hat{\beta}_{2}$, because usually β_{2} is more important than β_{1} in the regression model (1).
In order to obtain the properties of the least squares estimator $\hat{\beta}_{2}$, we rewrite (9) as:

$$
\begin{align*}
\hat{\beta}_{2} & =\sum_{i=1}^{n} \omega_{i} y_{i}=\sum_{i=1}^{n} \omega_{i}\left(\beta_{1}+\beta_{2} x_{i}+u_{i}\right) \\
& =\beta_{1} \sum_{i=1}^{n} \omega_{i}+\beta_{2} \sum_{i=1}^{n} \omega_{i} x_{i}+\sum_{i=1}^{n} \omega_{i} u_{i}=\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i} . \tag{13}
\end{align*}
$$

In the fourth equality of (13), (10) and (11) are utilized.

[Review] Random Variables:

Let $X_{1}, X_{2}, \cdots, X_{n}$ be n random variables, which are mutually independently and identically distributed.
mutually independent $\Longrightarrow f\left(x_{i}, x_{j}\right)=f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right)$ for $i \neq j$.
$f\left(x_{i}, x_{j}\right)$ denotes a joint distribution of X_{i} and X_{j}.
$f_{i}(x)$ indicates a marginal distribution of X_{i}.
identical $\Longrightarrow f_{i}(x)=f_{j}(x)$ for $i \neq j$.
[End of Review]

[Review] Mean and Variance:

Let X and Y be random variables (continuous type), which are independently distributed.

Definition and Formulas:

- $\mathrm{E}(g(X))=\int g(x) f(x) \mathrm{d} x$ for a function $g(\cdot)$ and a density function $f(\cdot)$.
- $\mathrm{V}(X)=\mathrm{E}\left((X-\mu)^{2}\right)=\int(x-\mu)^{2} f(x) \mathrm{d} x$ for $\mu=\mathrm{E}(X)$.
- $\mathrm{E}(a X+b)=a \mathrm{E}(X)+b$ and $\mathrm{V}(a X+b)=\mathrm{V}(a X)=a^{2} \mathrm{~V}(X)$ for constant a and b.
- $\mathrm{E}(X \pm Y)=\mathrm{E}(X) \pm \mathrm{E}(Y)$ and $\mathrm{V}(X \pm Y)=\mathrm{V}(X)+\mathrm{V}(Y)$.

[End of Review]

Mean and Variance of $\hat{\boldsymbol{\beta}}_{2}: \quad u_{1}, u_{2}, \cdots, u_{n}$ are assumed to be mutually independently and identically distributed with mean zero and variance σ^{2}, but they are not necessarily normal.

Remember that we do not need normality assumption to obtain mean and variance but the normality assumption is required to test a hypothesis.
From (13), the expectation of $\hat{\beta}_{2}$ is derived as follows:

$$
\begin{equation*}
\mathrm{E}\left(\hat{\beta}_{2}\right)=\mathrm{E}\left(\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\beta_{2}+\mathrm{E}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\beta_{2}+\sum_{i=1}^{n} \omega_{i} \mathrm{E}\left(u_{i}\right)=\beta_{2} . \tag{14}
\end{equation*}
$$

It is shown from (14) that the ordinary least squares estimator $\hat{\beta}_{2}$ is an unbiased estimator of β_{2}.

From (13), the variance of $\hat{\beta}_{2}$ is computed as:

$$
\mathrm{V}\left(\hat{\beta}_{2}\right)=\mathrm{V}\left(\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\mathrm{V}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\sum_{i=1}^{n} \mathrm{~V}\left(\omega_{i} u_{i}\right)=\sum_{i=1}^{n} \omega_{i}^{2} \mathrm{~V}\left(u_{i}\right)
$$

$$
\begin{equation*}
=\sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{15}
\end{equation*}
$$

The third equality holds because $u_{1}, u_{2}, \cdots, u_{n}$ are mutually independent.
The last equality comes from (12).
Thus, $\mathrm{E}\left(\hat{\beta}_{2}\right)$ and $\mathrm{V}\left(\hat{\beta}_{2}\right)$ are given by (14) and (15).

［Review］Three Good Properties on Estimator：

θ ：Parameter
$\hat{\theta}$ ：Estimator of θ ，i．e．，$\hat{\theta}=\hat{\theta}\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ ，
where $X_{1}, X_{2}, \cdots, X_{n}$ are mutually independent random variables．
（＊）Estimate of $\theta: \hat{\theta}=\hat{\theta}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ ，where x_{i} denotes the observed data of X_{i} ．

- Unbiasedness（不偏性）： $\mathrm{E}(\hat{\theta})=\theta$ ．
- Efficiency（有効性）：

The minimum variance estimator within all the unbiased estimators．
（＊）It is not easy to check efficiency in general．Instead，consider the best linear unbiased estimator（BLUE，最良線型不偏推定量）．
－Consistency（一致性）：$\hat{\theta} \longrightarrow \theta$ as $n \longrightarrow \infty$ ．Note that $\hat{\theta}$ depends on \＃of obs．
［End of Review］

Gauss－Markov Theorem（ガウス・マルコフ定理）：It has been discussed above that $\hat{\beta}_{2}$ is represented as（9），which implies that $\hat{\beta}_{2}$ is a linear estimator，i．e．，linear in y_{i} ．

In addition，（14）indicates that $\hat{\beta}_{2}$ is an unbiased estimator．

Therefore，summarizing these two facts，it is shown that $\hat{\beta}_{2}$ is a linear unbiased estimator（線形不偏推定量）

Furthermore，here we show that $\hat{\beta}_{2}$ has minimum variance within a class of the linear unbiased estimators．

Consider the alternative linear unbiased estimator $\tilde{\beta}_{2}$ as follows：

$$
\tilde{\beta}_{2}=\sum_{i=1}^{n} c_{i} y_{i}=\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right) y_{i},
$$

where $c_{i}=\omega_{i}+d_{i}$ is defined and d_{i} is nonstochastic．

