Exact Distribution of $\hat{\beta}_2$: We have shown asymptotic normality of $\sqrt{n}(\hat{\beta}_2 - \beta_2)$, which is one of the large sample properties.

Now, we discuss the small sample properties of $\hat{\beta}_2$.

In order to obtain the distribution of $\hat{\beta}_2$ in small sample, the distribution of the error term has to be assumed.

Therefore, the extra assumption is that $u_i \sim N(0, \sigma^2)$. Writing (13), again, $\hat{\beta}_2$ is represented as:

$$\hat{\beta}_2 = \beta_2 + \sum_{i=1}^n \omega_i u_i.$$

First, we obtain the distribution of the second term in the above equation.

[**Review**] Content of Special Lectures in Economics (Statistical Analysis) Note that the moment-generating function (積率母関数, MGF) is given by $M(\theta) \equiv E(\exp(\theta X)) = \exp(\mu\theta + \frac{1}{2}\sigma^2\theta^2)$ when $X \sim N(\mu, \sigma^2)$.

 X_1, X_2, \dots, X_n are mutually independently distributed as $X_i \sim N(\mu_i, \sigma_i^2)$ for $i = 1, 2, \dots, n$.

MGF of X_i is $M_i(\theta) \equiv E(\exp(\theta X_i)) = \exp(\mu_i \theta + \frac{1}{2}\sigma_i^2 \theta^2)$.

Consider the distribution of $Y = \sum_{i=1}^{n} (a_i + b_i X_i)$, where a_i and b_i are constant.

$$M_{y}(\theta) \equiv \mathrm{E}(\exp(\theta Y)) = \mathrm{E}(\exp(\theta \sum_{i=1}^{n} (a_{i} + b_{i}X_{i})))$$

$$= \prod_{i=1}^{n} \exp(\theta a_{i}) \mathrm{E}(\exp(\theta b_{i}X_{i})) = \prod_{i=1}^{n} \exp(\theta a_{i}) M_{i}(\theta b_{i})$$

$$= \prod_{i=1}^{n} \exp(\theta a_{i}) \exp(\mu_{i}\theta b_{i} + \frac{1}{2}\sigma_{i}^{2}(\theta b_{i})^{2}) = \exp(\theta \sum_{i=1}^{n} (a_{i} + b_{i}\mu_{i}) + \frac{1}{2}\theta^{2} \sum_{i=1}^{n} b_{i}^{2}\sigma_{i}^{2}),$$

which implies that $Y \sim N(\sum_{i=1}^{n} (a_{i} + b_{i}\mu_{i}), \sum_{i=1}^{n} b_{i}^{2}\sigma_{i}^{2}).$
[End of Review]

Substitute $a_i = 0$, $\mu_i = 0$, $b_i = \omega_i$ and $\sigma_i^2 = \sigma^2$.

Then, using the moment-generating function, $\sum_{i=1}^{n} \omega_i u_i$ is distributed as:

$$\sum_{i=1}^n \omega_i u_i \sim N(0, \ \sigma^2 \sum_{i=1}^n \omega_i^2).$$

Therefore, $\hat{\beta}_2$ is distributed as:

$$\hat{\beta}_2 = \beta_2 + \sum_{i=1}^n \omega_i u_i \sim N(\beta_2, \ \sigma^2 \sum_{i=1}^n \omega_i^2),$$

or equivalently,

$$\frac{\hat{\beta}_2 - \beta_2}{\sigma \sqrt{\sum_{i=1}^n \omega_i^2}} = \frac{\hat{\beta}_2 - \beta_2}{\sigma / \sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} \sim N(0, 1),$$

for any *n*.

[**Review 1**] *t* **Distribution:**

 $Z \sim N(0, 1), V \sim \chi^2(k)$, and Z is independent of V. Then, $\frac{Z}{\sqrt{V/k}} \sim t(k)$. [End of Review 1]

[Review 2] *t* Distribution:

Suppose that X_1, X_2, \dots, X_n are mutually independently, identically and normally dis-

tributed with mean
$$\mu$$
 and variance σ^2 .
 $\overline{X} \sim N(\mu, \sigma^2/n)$, i.e., $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$.
Define $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$, which is an unbiased estimator of σ^2 .
It is known that $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ and \overline{X} is independent of S^2 . (The proof is skipped.)

Then, we obtain
$$\frac{\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}}/(n-1)} = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1).$$

As a result, replacing σ^2 by S^2 , $\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1).$
[End of Review 2]

Back to OLS:

Replacing σ^2 by its estimator s^2 defined in (17), it is known that we have:

$$\frac{\hat{\beta}_2 - \beta_2}{s/\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} \sim t(n-2),$$

where t(n-2) denotes t distribution with n-2 degrees of freedom.

Thus, under normality assumption on the error term u_i , the t(n - 2) distribution is used for the confidence interval and the testing hypothesis in small sample.

Or, taking the square on both sides,

$$\Big(\frac{\hat{\beta}_2-\beta_2}{s/\sqrt{\sum_{i=1}^n(x_i-\overline{x})^2}}\Big)^2\sim F(1,n-2),$$

which will be proved later.

Before going to multiple regression model (重回帰モデル),

2 Some Formulas of Matrix Algebra

1. Let
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \cdots & a_{lk} \end{pmatrix} = [a_{ij}],$$

which is a $l \times k$ matrix, where a_{ij} denotes *i*th row and *j*th column of A.

The transposed matrix (転置行列) of A, denoted by A', is defined as:

$$A' = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{l1} \\ a_{12} & a_{22} & \cdots & a_{l2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1k} & a_{2k} & \cdots & a_{lk} \end{pmatrix} = [a_{ji}],$$

where the *i*th row of A' is the *i*th column of A.

2. (Ax)' = x'A',

where A and x are a $l \times k$ matrix and a $k \times 1$ vector, respectively.

3. a' = a,

where *a* denotes a scalar.

4.
$$\frac{\partial a'x}{\partial x} = a$$
,

where *a* and *x* are $k \times 1$ vectors.

5. If A is symmetric, A = A'.

6.
$$\frac{\partial x'Ax}{\partial x} = (A + A')x,$$

where A and x are a $k \times k$ matrix and a $k \times 1$ vector, respectively.

Especially, when A is symmetric,

$$\frac{\partial x'Ax}{\partial x} = 2Ax.$$

7. Let *A* and *B* be $k \times k$ matrices, and I_k be a $k \times k$ identity matrix (単位行列) (one in the diagonal elements and zero in the other elements).

When $AB = I_k$, B is called the **inverse matrix** (逆行列) of A, denoted by $B = A^{-1}$.

That is, $AA^{-1} = A^{-1}A = I_k$.

8. Let *A* be a $k \times k$ matrix and *x* be a $k \times 1$ vector.

If *A* is a **positive definite matrix** (正値定符号行列), for any *x* except for x = 0 we have:

If A is a positive semidefinite matrix (非負值定符号行列), for any x except

for x = 0 we have:

$x'Ax \ge 0.$

If *A* is a **negative definite matrix** (負値定符号行列), for any *x* except for x = 0 we have:

If *A* is a **negative semidefinite matrix** (非正値定符号行列), for any *x* except for x = 0 we have:

 $x'Ax \leq 0.$

Trace, Rank and etc.: $A: k \times k$, $B: n \times k$, $C: k \times n$.

1. The trace
$$(\vdash \lor \neg \neg)$$
 of A is: tr(A) = $\sum_{i=1}^{k} a_{ii}$, where $A = [a_{ij}]$.

- 2. The **rank** (ランク, 階数) of *A* is the maximum number of linearly independent column (or row) vectors of *A*, which is denoted by rank(A).
- 3. If A is an **idempotent matrix** (べき等行列), $A = A^2$.
- 4. If *A* is an idempotent and symmetric matrix, $A = A^2 = A'A$.
- 5. *A* is idempotent if and only if the eigen values of *A* consist of 1 and 0.
- 6. If A is idempotent, rank(A) = tr(A).
- 7. tr(BC) = tr(CB)

Distributions in Matrix Form:

1. Let *X*, μ and Σ be $k \times 1$, $k \times 1$ and $k \times k$ matrices.

When $X \sim N(\mu, \Sigma)$, the density function of X is given by:

$$f(x) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)' \Sigma^{-1}(x-\mu)\right).$$

 $E(X) = \mu$ and $V(X) = E((X - \mu)(X - \mu)') = \Sigma$

The moment-generating function: $\phi(\theta) = E(\exp(\theta' X)) = \exp(\theta' \mu + \frac{1}{2}\theta' \Sigma \theta)$

(*) In the univariate case, when $X \sim N(\mu, \sigma^2)$, the density function of X is:

$$f(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$

2. If $X \sim N(\mu, \Sigma)$, then $(X - \mu)' \Sigma^{-1} (X - \mu) \sim \chi^2(k)$.

Note that $X'X \sim \chi^2(k)$ when $X \sim N(0, I_k)$.

3. X: $n \times 1$, Y: $m \times 1$, X ~ $N(\mu_x, \Sigma_x)$, Y ~ $N(\mu_y, \Sigma_y)$