s^{2} is taken as follows:

$$
s^{2}=\frac{1}{n-k} \sum_{i=1}^{n} e_{i}^{2}=\frac{1}{n-k} e^{\prime} e=\frac{1}{n-k}(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})
$$

which leads to an unbiased estimator of σ^{2}.

Proof:

Substitute $y=X \beta+u$ and $\hat{\beta}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u$ into $e=y-X \hat{\beta}$.

$$
\begin{aligned}
e & =y-X \hat{\beta}=X \beta+u-X\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u\right) \\
& =u-X\left(X^{\prime} X\right)^{-1} X^{\prime} u=\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u
\end{aligned}
$$

$I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}$ is idempotent and symmetric, because we have:

$$
\begin{aligned}
& \left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime} \\
& \left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime}=I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}
\end{aligned}
$$

s^{2} is rewritten as follows:

$$
\begin{aligned}
s^{2} & =\frac{1}{n-k} e^{\prime} e=\frac{1}{n-k}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u\right)^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u \\
& =\frac{1}{n-k} u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u \\
& =\frac{1}{n-k} u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u
\end{aligned}
$$

Take the expectation of $u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u$ and note that $\operatorname{tr}(a)=a$ for a scalar a.

$$
\begin{aligned}
\mathrm{E}\left(s^{2}\right) & =\frac{1}{n-k} \mathrm{E}\left(\operatorname{tr}\left(u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u\right)\right)=\frac{1}{n-k} \mathrm{E}\left(\operatorname{tr}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u u^{\prime}\right)\right) \\
& =\frac{1}{n-k} \operatorname{tr}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \mathrm{E}\left(u u^{\prime}\right)\right)=\frac{1}{n-k} \sigma^{2} \operatorname{tr}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) I_{n}\right) \\
& =\frac{1}{n-k} \sigma^{2} \operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\frac{1}{n-k} \sigma^{2}\left(\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right) \\
& =\frac{1}{n-k} \sigma^{2}\left(\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)\right)=\frac{1}{n-k} \sigma^{2}\left(\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(I_{k}\right)\right) \\
& =\frac{1}{n-k} \sigma^{2}(n-k)=\sigma^{2}
\end{aligned}
$$

$\longrightarrow s^{2}$ is an unbiased estimator of σ^{2}.
Note that we do not need normality assumption for unbiasedness of s^{2}.

[Review]

- $X^{\prime} X \sim \chi^{2}(n)$ for $X \sim N\left(0, I_{n}\right)$.
- $(X-\mu)^{\prime} \Sigma^{-1}(X-\mu) \sim \chi^{2}(n)$ for $X \sim N(\mu, \Sigma)$.
- $\frac{X^{\prime} X}{\sigma^{2}} \sim \chi^{2}(n)$ for $X \sim N\left(0, \sigma^{2} I_{n}\right)$.
- $\frac{X^{\prime} A X}{\sigma^{2}} \sim \chi^{2}(G)$, where $X \sim N\left(0, \sigma^{2} I_{n}\right)$ and A is a symmetric idempotent $n \times n$ matrix of $\operatorname{rank} G \leq n$.

Remember that $G=\operatorname{Rank}(A)=\operatorname{tr}(A)$ when A is symmetric and idempotent.

[End of Review]

Under normality assumption for u, the distribution of s^{2} is:

$$
\frac{(n-k) s^{2}}{\sigma^{2}}=\frac{u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u}{\sigma^{2}} \sim \chi^{2}\left(\operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)
$$

Note that $\operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=n-k$, because

$$
\begin{aligned}
& \operatorname{tr}\left(I_{n}\right)=n \\
& \operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)=\operatorname{tr}\left(I_{k}\right)=k
\end{aligned}
$$

Asymptotic Normality (without normality assumption on \boldsymbol{u}): Using the central limit theorem, without normality assumption we can show that as $n \longrightarrow \infty$, under the condition of $\frac{1}{n} X^{\prime} X \longrightarrow M$ we have the following result:

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{s \sqrt{a_{j j}}} \longrightarrow N(0,1),
$$

where M denotes a $k \times k$ constant matrix.

Thus, we can construct the confidence interval and the testing procedure, using the t distribution under the normality assumption or the normal distribution without the normality assumption.

4 Properties of OLSE

1．Properties of $\hat{\beta}$ ：BLUE（best linear unbiased estimator，最良線形不偏推定量），i．e．，minimum variance within the class of linear unbiased estimators （Gauss－Markov theorem，ガウス・マルコフの定理）

Proof：

Consider another linear unbiased estimator，which is denoted by $\tilde{\beta}=C y$ ．

$$
\tilde{\beta}=C y=C(X \beta+u)=C X \beta+C u,
$$

where C is a $k \times n$ matrix．
Taking the expectation of $\tilde{\beta}$ ，we obtain：

$$
\mathrm{E}(\tilde{\beta})=C X \beta+C \mathrm{E}(u)=C X \beta
$$

Because we have assumed that $\tilde{\beta}=C y$ is unbiased， $\mathrm{E}(\tilde{\beta})=\beta$ holds．

That is, we need the condition: $C X=I_{k}$.
Next, we obtain the variance of $\tilde{\beta}=C y$.

$$
\tilde{\beta}=C(X \beta+u)=\beta+C u .
$$

Therefore, we have:

$$
\left.\mathrm{V}(\tilde{\beta})=\mathrm{E}(\tilde{\beta}-\beta)(\tilde{\beta}-\beta)^{\prime}\right)=\mathrm{E}\left(C u u^{\prime} C^{\prime}\right)=\sigma^{2} C C^{\prime}
$$

Defining $C=D+\left(X^{\prime} X\right)^{-1} X^{\prime}, \mathrm{V}(\tilde{\beta})$ is rewritten as:

$$
\mathrm{V}(\tilde{\beta})=\sigma^{2} C C^{\prime}=\sigma^{2}\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime} .
$$

Moreover, because $\hat{\beta}$ is unbiased, we have the following:

$$
C X=I_{k}=\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right) X=D X+I_{k} .
$$

Therefore, we have the following condition:

$$
D X=0 .
$$

Accordingly, $\mathrm{V}(\tilde{\beta})$ is rewritten as:

$$
\begin{aligned}
\mathrm{V}(\tilde{\beta}) & =\sigma^{2} C C^{\prime}=\sigma^{2}\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}+\sigma^{2} D D^{\prime}=\mathrm{V}(\hat{\beta})+\sigma^{2} D D^{\prime}
\end{aligned}
$$

Thus, $\mathrm{V}(\tilde{\beta})-\mathrm{V}(\hat{\beta})$ is a positive definite matrix.
$\Longrightarrow \mathrm{V}\left(\tilde{\beta}_{i}\right)-\mathrm{V}\left(\hat{\beta}_{i}\right)>0$
$\Longrightarrow \hat{\beta}$ is a minimum variance (i.e., best) linear unbiased estimator of β.

Note as follows:
$\Longrightarrow A$ is positive definite when $d^{\prime} A d>0$ except $d=0$.
\Longrightarrow The i th diagonal element of A, i.e., $a_{i i}$, is positive (choose d such that the i th element of d is one and the other elements are zeros).

[Review] F Distribution:

Suppose that $U \sim \chi(n), V \sim \chi(m)$, and U is independent of V.
Then, $\frac{U / n}{V / m} \sim F(n, m)$.
[End of Review]
\boldsymbol{F} Distribution $\left(\boldsymbol{H}_{\mathbf{0}}: \boldsymbol{\beta}=\mathbf{0}\right)$: Final Result in this Section:

$$
\frac{(\hat{\beta}-\beta) X^{\prime} X(\hat{\beta}-\beta)^{\prime} / k}{e^{\prime} e /(n-k)} \sim F(k, n-k) .
$$

Consider the numerator and the denominator, separately.

1. If $u \sim N\left(0, \sigma^{2} I_{n}\right)$, then $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$.

Therefore, $\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)}{\sigma^{2}} \sim \chi^{2}(k)$.
2. Proof:

Using $\hat{\beta}-\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} u$, we obtain:

$$
\begin{aligned}
(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta) & =\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)^{\prime} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& =u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u=u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u
\end{aligned}
$$

