Note that $X(X'X)^{-1}X'$ is symmetric and idempotent, i.e., A'A = A.

$$\frac{u'X(X'X)^{-1}X'u}{\sigma^2} \sim \chi^2 \Big(\text{tr}(X(X'X)^{-1}X') \Big)$$

The degree of freedom is given by:

$$tr(X(X'X)^{-1}X') = tr((X'X)^{-1}X'X) = tr(I_k) = k$$

Therefore, we obtain:

$$\frac{u'X(X'X)^{-1}X'u}{\sigma^2} \sim \chi^2(k)$$

3. (*) Formula:

Suppose that $X \sim N(0, I_k)$.

If A is symmetric and idempotent, i.e., A'A = A, then $X'AX \sim \chi^2(\operatorname{tr}(A))$.

Here,
$$X = \frac{1}{\sigma} u \sim N(0, I_n)$$
 from $u \sim N(0, \sigma^2 I_n)$, and $A = X(X'X)^{-1}X'$.

4. **Sum of Residuals:** *e* is rewritten as:

$$e = (I_n - X(X'X)^{-1}X')u.$$

Therefore, the sum of residuals is given by:

$$e'e = u'(I_n - X(X'X)^{-1}X')u.$$

Note that $I_n - X(X'X)^{-1}X'$ is symmetric and idempotent.

We obtain the following result:

$$\frac{e'e}{\sigma^2} = \frac{u'(I_n - X(X'X)^{-1}X')u}{\sigma^2} \sim \chi^2 \Big(tr(I_n - X(X'X)^{-1}X') \Big),$$

where the trace is:

$$tr(I_n - X(X'X)^{-1}X') = n - k.$$

Therefore, we have the following result:

$$\frac{e'e}{\sigma^2} = \frac{(n-k)s^2}{\sigma^2} \sim \chi^2(n-k),$$

where

$$s^2 = \frac{1}{n-k}e'e.$$

5. We show that $\hat{\beta}$ is independent of e.

Proof:

Because $u \sim N(0, \sigma^2 I_n)$, we show that $Cov(e, \hat{\beta}) = 0$.

$$\begin{aligned} &\operatorname{Cov}(e,\hat{\beta}) = \operatorname{E}(e(\hat{\beta}-\beta)') = \operatorname{E}\Big((I_n - X(X'X)^{-1}X')u((X'X)^{-1}X'u)'\Big) \\ &= \operatorname{E}\Big((I_n - X(X'X)^{-1}X')uu'X(X'X)^{-1}\Big) = (I_n - X(X'X)^{-1}X')\operatorname{E}(uu')X(X'X)^{-1} \\ &= (I_n - X(X'X)^{-1}X')(\sigma^2I_n)X(X'X)^{-1} = \sigma^2(I_n - X(X'X)^{-1}X')X(X'X)^{-1} \\ &= \sigma^2(X(X'X)^{-1} - X(X'X)^{-1}X'X(X'X)^{-1}) = \sigma^2(X(X'X)^{-1} - X(X'X)^{-1}) = 0. \end{aligned}$$

 $\hat{\beta}$ is independent of e, because of normality assumption on u

[Review]

- Suppose that X is independent of Y. Then, Cov(X, Y) = 0. However, Cov(X, Y) = 0 does not mean in general that X is independent of Y.
- In the case where X and Y are normal, Cov(X, Y) = 0 indicates that X is independent of Y.

[End of Review]

[Review] Formulas — F Distribution:

- $\frac{U/n}{V/m} \sim F(n, m)$ when U $sim\chi^2(n)$, $V \sim \chi^2(m)$, and U is independent of V.
- When $X \sim N(0, I_n)$, A and B are $n \times n$ symmetric idempotent matrices, $\operatorname{Rank}(A) = \operatorname{tr}(A) = G$, $\operatorname{Rank}(B) = \operatorname{tr}(B) = K$ and AB = 0, then $\frac{X'AX/G}{X'BX/K} \sim F(G, K)$.

Note that the covariance of AX and BX is zero, which implies that AX is independent of BX under normality of X.

[End of Review]

6. Therefore, we obtain the following distribution:

$$\frac{(\hat{\beta} - \beta)'X'X(\hat{\beta} - \beta)}{\sigma^2} = \frac{u'X(X'X)^{-1}X'u}{\sigma^2} \sim \chi^2(k),$$
$$\frac{e'e}{\sigma^2} = \frac{u'(I_n - X(X'X)^{-1}X')u}{\sigma^2} \sim \chi^2(n - k)$$

 $\hat{\beta}$ is independent of e, because $X(X'X)^{-1}X'(I_n - X(X'X)^{-1}X') = 0$.

Accordingly, we can derive:

$$\frac{(\hat{\beta} - \beta)'X'X(\hat{\beta} - \beta)}{\frac{e'e}{\sigma^2}/(n - k)} = \frac{(\hat{\beta} - \beta)'X'X(\hat{\beta} - \beta)/k}{s^2} \sim F(k, n - k)$$

Under the null hypothesis $H_0: \beta = 0, \frac{\hat{\beta}' X' X \hat{\beta}/k}{s^2} \sim F(k, n - k).$

Given data, $\frac{\hat{\beta}' X' X \hat{\beta}/k}{c^2}$ is compared with F(k, n - k).

If $\frac{\hat{\beta}' X' X \hat{\beta}/k}{c^2}$ is in the tail of the *F* distribution, the null hypothesis is rejected.

Coefficient of Determination (決定係数), R2:

1. Definition of the Coefficient of Determination,
$$R^2$$
: $R^2 = 1 - \frac{\sum_{i=1}^n e_i^2}{\sum_{i=1}^n (v_i - \overline{v})^2}$

2. Numerator:
$$\sum_{i=1}^{n} e_i^2 = e'e$$

3. Denominator:
$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = y'(I_n - \frac{1}{n}ii')'(I_n - \frac{1}{n}ii')y = y'(I_n - \frac{1}{n}ii')y$$

(*) Remark

$$\begin{pmatrix} y_1 - \overline{y} \\ y_2 - \overline{y} \\ \vdots \\ y_n - \overline{y} \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} - \begin{pmatrix} \overline{y} \\ \overline{y} \\ \vdots \\ \overline{y} \end{pmatrix} = y - \frac{1}{n}ii'y = (I_n - \frac{1}{n}ii')y,$$

where $i = (1, 1, \dots, 1)'$.

4. In a matrix form, we can rewrite as: $R^2 = 1 - \frac{e'e}{y'(I_n - \frac{1}{n}ii')y}$

F Distribution and Coefficient of Determination:

 \implies This will be discussed later.

Testing Linear Restrictions (*F* **Distribution):**

1. If
$$u \sim N(0, \sigma^2 I_n)$$
, then $\hat{\beta} \sim N(\beta, \sigma^2 (X'X)^{-1})$.

Consider testing the hypothesis $H_0: R\beta = r$.

$$R: G \times k$$
, $\operatorname{rank}(R) = G \leq k$.

$$R\hat{\beta} \sim N(R\beta, \sigma^2 R(X'X)^{-1}R').$$

Therefore,
$$\frac{(R\hat{\beta}-r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta}-r)}{\sigma^2} \sim \chi^2(G).$$

Note that $R\beta = r$.

- (a) When $\hat{\beta} \sim N(\beta, \sigma^2(X'X)^{-1})$, the mean of $R\hat{\beta}$ is: $E(R\hat{\beta}) = RE(\hat{\beta}) = R\beta.$
- (b) When $\hat{\beta} \sim N(\beta, \sigma^2(X'X)^{-1})$, the variance of $R\hat{\beta}$ is: