because $M i=0$.

$$
M X \hat{\beta}=\left(\begin{array}{ll}
0 & M X_{2}
\end{array}\right)\binom{\hat{\beta}_{1}}{\hat{\beta}_{2}}=M X_{2} \hat{\beta}_{2}
$$

Thus,

$$
M y=M X \hat{\beta}+M e \quad \Longrightarrow \quad M y=M X_{2} \hat{\beta}_{2}+e
$$

$y^{\prime} M y$ is given by: $y^{\prime} M y=\hat{\beta}_{2}^{\prime} X_{2}^{\prime} M X_{2} \hat{\beta}_{2}+e^{\prime} e$, because $X_{2}^{\prime} e=0$ and $M e=e$.
The coefficient of determinant, $R^{2}$, is rewritten as:

$$
\begin{gathered}
R^{2}=1-\frac{e^{\prime} e}{y^{\prime} M y} \quad \Longrightarrow \quad e^{\prime} e=\left(1-R^{2}\right) y^{\prime} M y, \\
R^{2}=\frac{y^{\prime} M y-e^{\prime} e}{y^{\prime} M y}=\frac{\hat{\beta}_{2}^{\prime} X_{2}^{\prime} M X_{2} \hat{\beta}_{2}}{y^{\prime} M y} \quad \Longrightarrow \quad \hat{\beta}_{2}^{\prime} X_{2}^{\prime} M X_{2} \hat{\beta}_{2}=R^{2} y^{\prime} M y .
\end{gathered}
$$

Therefore,
$\frac{\hat{\beta}_{2}^{\prime} X_{2}^{\prime} M X_{2} \hat{\beta}_{2} /(k-1)}{e^{\prime} e /(n-k)}=\frac{R^{2} y^{\prime} M y /(k-1)}{\left(1-R^{2}\right) y^{\prime} M y /(n-k)}=\frac{R^{2} /(k-1)}{\left(1-R^{2}\right) /(n-k)} \sim F(k-1, n-k)$.
Thus, using $R^{2}$, the null hypothesis $H_{0}: \beta_{2}=0$ is easily tested.

## 5 Restricted OLS（制約付き最小二乗法）

1．Let $\tilde{\beta}$ be the restricted estimator．
Consider the linear restriction：$R \beta=r$ ．

2．Minimize $(y-X \tilde{\beta})^{\prime}(y-X \tilde{\beta})$ subject to $R \tilde{\beta}=r$ ．
Let $L$ be the Lagrangian for the minimization problem．

$$
L=(y-X \tilde{\beta})^{\prime}(y-X \tilde{\beta})-2 \tilde{\lambda}^{\prime}(R \tilde{\beta}-r)
$$

Let $\tilde{\beta}$ and $\tilde{\lambda}$ be the solutions of $\beta$ and $\lambda$ in the optimization problem shown above．

That is，$\tilde{\beta}$ and $\tilde{\lambda}$ minimize the Lagrangian $L$ ．

Therefore, we solve the following equations:

$$
\begin{aligned}
& \frac{\partial L}{\partial \tilde{\beta}}=-2 X^{\prime}(y-X \tilde{\beta})-2 R^{\prime} \tilde{\lambda}=0 \\
& \frac{\partial L}{\partial \tilde{\lambda}}=-2(R \tilde{\beta}-r)=0
\end{aligned}
$$

(*) Remember that $\frac{\partial a^{\prime} x}{\partial x}=a$ and $\frac{\partial x^{\prime} A x}{\partial x}=\left(A+A^{\prime}\right) x$.
From $\frac{\partial L}{\partial \tilde{\beta}}=0$, we obtain:

$$
\tilde{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y+\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda}=\hat{\beta}+\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda} .
$$

Multiplying $R$ from the left, we have:

$$
R \tilde{\beta}=R \hat{\beta}+R\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda}
$$

Because $R \tilde{\beta}=r$ has to be satisfied, we have the following expression:

$$
r=R \hat{\beta}+R\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda}
$$

Therefore, solving the above equation with respect to $\tilde{\lambda}$, we obtain:

$$
\tilde{\lambda}=\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(r-R \hat{\beta})
$$

Substituting $\tilde{\lambda}$ into $\tilde{\beta}=\hat{\beta}+\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda}$, the restricted OLSE is given by:

$$
\tilde{\beta}=\hat{\beta}+\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(r-R \hat{\beta})
$$

(a) The expectation of $\tilde{\beta}$ is:

$$
\begin{aligned}
\mathrm{E}(\tilde{\beta}) & =\mathrm{E}(\hat{\beta})+\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(r-R \mathrm{E}(\hat{\beta})) \\
& =\beta+\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(r-R \beta) \\
& =\beta
\end{aligned}
$$

because of $R \beta=r$.

Thus, it is shown that $\tilde{\beta}$ is unbiased.
(b) The variance of $\tilde{\beta}$ is as follows.

First, rewrite as follows:

$$
\begin{aligned}
(\tilde{\beta}-\beta) & =(\hat{\beta}-\beta)+\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \beta-R \hat{\beta}) \\
& =(\hat{\beta}-\beta)-\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-R \beta) \\
& =(\hat{\beta}-\beta)-\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R(\hat{\beta}-\beta) \\
& =\left(I_{k}-\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R\right)(\hat{\beta}-\beta) \\
& =W(\hat{\beta}-\beta),
\end{aligned}
$$

where $W \equiv I_{k}-\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R$.

Then, we obtain the following variance:

$$
\begin{aligned}
& \mathrm{V}(\tilde{\beta}) \equiv \mathrm{E}\left((\tilde{\beta}-\beta)(\tilde{\beta}-\beta)^{\prime}\right)=\mathrm{E}\left(W(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime} W^{\prime}\right) \\
&= W \mathrm{E}\left((\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime}\right) W^{\prime}=W \mathrm{~V}(\hat{\beta}) W^{\prime}=\sigma^{2} W\left(X^{\prime} X\right)^{-1} W^{\prime} \\
&= \sigma^{2}\left(I-\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R\right)\left(X^{\prime} X\right)^{-1} \\
& \quad \quad \times\left(I-\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R\right)^{\prime} \\
&= \sigma^{2}\left(X^{\prime} X\right)^{-1}-\sigma^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R\left(X^{\prime} X\right)^{-1} \\
&= \mathrm{V}(\hat{\beta})-\sigma^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

That is,

$$
\mathrm{V}(\hat{\beta})-\mathrm{V}(\tilde{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R\left(X^{\prime} X\right)^{-1}
$$

Thus, $\mathrm{V}(\hat{\beta})-\mathrm{V}(\tilde{\beta})$ is positive definite.

If $X^{\prime} X$ is positive definite,
$\Longrightarrow$ then $\left(X^{\prime} X\right)^{-1}$ is also positive definite,
$\Longrightarrow$ then $R\left(X^{\prime} X\right)^{-1} R^{\prime}$ is also positive definite,
$\Longrightarrow$ then $\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}$ is also positive definite,
$\Longrightarrow$ then $\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R\left(X^{\prime} X\right)^{-1}$ is also positive definite,

Let $a$ be a $k \times 1$ vector.
Defining $z=X a$, which is a $n \times 1$ vector, construct the sum of squared elements
$z^{\prime} z=\sum_{i=1}^{n} z_{i}^{2}>0$ for $z \neq 0$.
Therefore, we obtain: $z^{\prime} z=(X a)^{\prime}(X a)=a^{\prime} X^{\prime} X a>0$ for $z=X a \neq 0$.
Thus, $X^{\prime} X$ is positive definite.
3. Another solution:

Again, write the first-order condition for minimization:

$$
\begin{aligned}
& \frac{\partial L}{\partial \tilde{\beta}}=-2 X^{\prime}(y-X \tilde{\beta})-2 R^{\prime} \tilde{\lambda}=0 \\
& \frac{\partial L}{\partial \tilde{\lambda}}=-2(R \tilde{\beta}-r)=0
\end{aligned}
$$

which can be written as:

$$
\begin{aligned}
& X^{\prime} X \tilde{\beta}-R^{\prime} \tilde{\lambda}=X^{\prime} y \\
& R \tilde{\beta}=r
\end{aligned}
$$

Using the matrix form:

$$
\left(\begin{array}{cc}
X^{\prime} X & R^{\prime} \\
R & 0
\end{array}\right)\binom{\tilde{\beta}}{-\tilde{\lambda}}=\binom{X^{\prime} y}{r}
$$

The solutions of $\tilde{\beta}$ and $-\tilde{\lambda}$ are given by:

$$
\binom{\tilde{\beta}}{-\tilde{\lambda}}=\left(\begin{array}{cc}
X^{\prime} X & R^{\prime} \\
R & 0
\end{array}\right)^{-1}\binom{X^{\prime} y}{r} .
$$

(*) Formula to the inverse matrix:

$$
\left(\begin{array}{ll}
A & B \\
B^{\prime} & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
E & F \\
F^{\prime} & G
\end{array}\right)
$$

where $E, F$ and $G$ are given by:

$$
\begin{aligned}
& E=\left(A-B D^{-1} B^{\prime}\right)^{-1}=A^{-1}+A^{-1} B\left(D-B^{\prime} A^{-1} B\right)^{-1} B^{\prime} A^{-1} \\
& F=-\left(A-B D^{-1} B^{\prime}\right)^{-1} B D^{-1}=-A^{-1} B\left(D-B^{\prime} A^{-1} B\right)^{-1} \\
& G=\left(D-B^{\prime} A^{-1} B\right)^{-1}=D^{-1}+D^{-1} B^{\prime}\left(A-B D^{-1} B^{\prime}\right)^{-1} B D^{-1}
\end{aligned}
$$

In this case, $E$ and $F$ correspond to:

$$
\begin{aligned}
& E=\left(X^{\prime} X\right)^{-1}-\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R\left(X^{\prime} X\right)^{-1} \\
& F=\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} .
\end{aligned}
$$

Therefore, $\tilde{\beta}$ is derived as follows:

$$
\begin{aligned}
\tilde{\beta} & =E X^{\prime} y+F r \\
& =\hat{\beta}+\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(r-R \hat{\beta}) .
\end{aligned}
$$

The variance is:

$$
\mathrm{V}\binom{\tilde{\beta}}{-\tilde{\lambda}}=\sigma^{2}\left(\begin{array}{cc}
X^{\prime} X & R^{\prime} \\
R & 0
\end{array}\right)^{-1} .
$$

Therefore, $\mathrm{V}(\tilde{\beta})$ is:

$$
\mathrm{V}(\tilde{\beta})=\sigma^{2} E=\sigma^{2}\left(\left(X^{\prime} X\right)^{-1}-\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R\left(X^{\prime} X\right)^{-1}\right)
$$

Under the restriction: $R \beta=r$,

$$
\mathrm{V}(\hat{\beta})-\mathrm{V}(\tilde{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R\left(X^{\prime} X\right)^{-1}
$$

is positive definite.

