Accordingly, b is more efficient than $\hat{\beta}$.

7. If $u \sim N\left(0, \sigma^{2} \Omega\right)$, then $b \sim N\left(\beta, \sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1}\right)$.

Consider testing the hypothesis $H_{0}: R \beta=r$.

$$
\begin{aligned}
& R: G \times k, \quad \operatorname{rank}(R)=G \leq k \\
& R b \sim N\left(R \beta, \sigma^{2} R\left(X^{\prime} \Omega^{-1} X\right)^{-1} R^{\prime}\right) .
\end{aligned}
$$

Therefore, the following quadratic form is distributed as:

$$
\frac{(R b-r)^{\prime}\left(R\left(X^{\prime} \Omega^{-1} X\right)^{-1} R^{\prime}\right)^{-1}(R b-r)}{\sigma^{2}} \sim \chi^{2}(G)
$$

8. Because $\left(y^{\star}-X^{\star} b\right)^{\prime}\left(y^{\star}-X^{\star} b\right) / \sigma^{2} \sim \chi^{2}(n-k)$, we obtain:

$$
\frac{(y-X b)^{\prime} \Omega^{-1}(y-X b)}{\sigma^{2}} \sim \chi^{2}(n-k)
$$

9. Furthermore, from the fact that b is independent of $y-X b$, the following F distribution can be derived:

$$
\frac{(R b-r)^{\prime}\left(R\left(X^{\prime} \Omega^{-1} X\right)^{-1} R^{\prime}\right)^{-1}(R b-r) / G}{(y-X b)^{\prime} \Omega^{-1}(y-X b) /(n-k)} \sim F(G, n-k)
$$

10. Let b be the unrestricted GLSE and \tilde{b} be the restricted GLSE.

Their residuals are given by e and \tilde{u}, respectively.

$$
e=y-X b, \quad \tilde{u}=y-X \tilde{b}
$$

Then, the F test statistic is written as follows:

$$
\frac{\left(\tilde{u}^{\prime} \Omega^{-1} \tilde{u}-e^{\prime} \Omega^{-1} e\right) / G}{e^{\prime} \Omega^{-1} e /(n-k)} \sim F(G, n-k)
$$

8.1 Example: Mixed Estimation (Theil and Goldberger Model)

A generalization of the restricted OLS \Longrightarrow Stochastic linear restriction:

$$
\begin{array}{ll}
r=R \beta+v, & \mathrm{E}(v)=0 \text { and } \mathrm{V}(v)=\sigma^{2} \Psi \\
y=X \beta+u, & \mathrm{E}(u)=0 \text { and } \mathrm{V}(u)=\sigma^{2} I_{n}
\end{array}
$$

Using a matrix form,

$$
\binom{y}{r}=\binom{X}{R} \beta+\binom{u}{v}, \quad \mathrm{E}\binom{u}{v}=\binom{0}{0} \text { and } \mathrm{V}\binom{u}{v}=\sigma^{2}\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)
$$

For estimation, we do not need normality assumption.
Applying GLS, we obtain:

$$
\begin{aligned}
b & =\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1}\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{ll}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{y}{r}\right) \\
& =\left(X^{\prime} X+R^{\prime} \Psi^{-1} R\right)^{-1}\left(X^{\prime} y+R^{\prime} \Psi^{-1} r\right)
\end{aligned}
$$

Mean and Variance of $b: \quad b$ is rewritten as follows:

$$
\begin{aligned}
b & =\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{ll}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1}\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{ll}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{y}{r}\right) \\
& =\beta+\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1}\binom{u}{v}
\end{aligned}
$$

Therefore, the mean and variance are given by:

$$
\begin{aligned}
& \mathrm{E}(b)=\beta \quad \Longrightarrow \quad b \text { is unbiased. } \\
& \begin{aligned}
\mathrm{V}(b) & =\sigma^{2}\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X+R^{\prime} \Psi^{-1} R\right)^{-1}
\end{aligned}
\end{aligned}
$$

9 Maximum Likelihood Estimation（MLE，最哭法）

\longrightarrow Review

1．The distribution function of $\left\{X_{i}\right\}_{i=1}^{n}$ is $f(x ; \theta)$ ，where $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ ．
θ is a vector or matrix of unknown parameters，e．g．，$\theta=(\mu, \Sigma)$ ，where $\mu=\mathrm{E}\left(X_{i}\right)$ and $\Sigma=\mathrm{V}\left(X_{i}\right)$ ．

Note that X is a vector of random variables and x is a vector of their realizations （i．e．，observed data）．

Likelihood function $L(\cdot)$ is defined as $L(\theta ; x)=f(x ; \theta)$ ．

Note that $f(x ; \theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$ when $X_{1}, X_{2}, \cdots, X_{n}$ are mutually indepen－ dently and identically distributed．

The maximum likelihood estimate (MLE) of θ is the θ such that:

$$
\max _{\theta} L(\theta ; x) . \quad \Longleftrightarrow \quad \max _{\theta} \log L(\theta ; x)
$$

Thus, MLE satisfies the following two conditions:
(a) $\frac{\partial \log L(\theta ; x)}{\partial \theta}=0 . \quad \Longrightarrow \quad$ Solution of $\theta: \tilde{\theta}=\tilde{\theta}(x)$
(b) $\frac{\partial^{2} \log L(\theta ; x)}{\partial \theta \partial \theta^{\prime}}$ is a negative definite matrix.
2. $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ are used as the observations (i.e., observed data).
$X=\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ denote the random variables associated with the joint distribution $f(x ; \theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$.

