
3. Replacing x by X, we otain the maximum likelihood estimator (MLE, which

is the same word as the maximum likelihood estimate).

That is, MLE of θ satisfies the following two conditions:

(a)
∂ log L(θ; X)

∂θ
= 0. =⇒ Solution of θ: θ̃ = θ̃(X)

(b)
∂2 log L(θ; X)

∂θ∂θ′
is a negative definite matrix.

4. Fisher’s information matrix (フィッシャーの情報行列) or simply informa-

tion matrix, denoted by I(θ), is given by:

I(θ) = −E
(∂2 log L(θ; X)

∂θ∂θ′
)
,

where we have the following equality:

−E
(∂2 log L(θ; X)

∂θ∂θ′
)

= E
(∂ log L(θ; X)

∂θ

∂ log L(θ; X)
∂θ′

)
= V

(∂ log L(θ; X)
∂θ

)

Note that E(·) and V(·) are expected with respect to X.
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Proof of the above equality:
∫

L(θ; x)dx = 1

Take a derivative with respect to θ.
∫

∂L(θ; x)
∂θ

dx = 0

(We assume that (i) the domain of x does not depend on θ and (ii) the derivative
∂L(θ; x)
∂θ

exists.)

Rewriting the above equation, we obtain:
∫

∂ log L(θ; x)
∂θ

L(θ; x)dx = 0,

i.e.,

E
(
∂ log L(θ; X)

∂θ

)
= 0.
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Again, differentiating the above with respect to θ, we obtain:
∫

∂2 log L(θ; x)
∂θ∂θ′

L(θ; x)dx +

∫
∂ log L(θ; x)

∂θ

∂L(θ; x)
∂′θ

dx

=

∫
∂2 log L(θ; x)

∂θ∂θ′
L(θ; x)dx +

∫
∂ log L(θ; x)

∂θ

∂ log L(θ; x)
∂θ′

L(θ; x)dx

= E
(∂2 log L(θ; X)

∂θ∂θ′
)

+ E
(∂ log L(θ; X)

∂θ

∂ log L(θ; X)
∂θ′

)
= 0.

Therefore, we can derive the following equality:

−E
(
∂2 log L(θ; X)

∂θ∂θ′

)
= E

(
∂ log L(θ; X)

∂θ

∂ log L(θ; X)
∂θ′

)
= V

(
∂ log L(θ; X)

∂θ

)
,

where the second equality utilizes E
(
∂ log L(θ; X)

∂θ

)
= 0.

5. Cramer-Rao Lower Bound (クラメール・ラオの下限) is given by: (I(θ))−1.

Suppose that an estimator of θ is given by s(X).
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The expectation of s(X) is:

E(s(X)) =

∫
s(x)L(θ; x)dx.

Differentiating the above with respect to θ,

∂E(s(X))
∂θ

=

∫
s(x)

∂L(θ; x)
∂θ

dx =

∫
s(x)

∂ log L(θ; x)
∂θ

L(θ; x)dx

= Cov
(
s(X),

∂ log L(θ; X)
∂θ

)

For simplicity, let s(X) and θ be scalars.

Then,
(
∂E(s(X))

∂θ

)2

=

(
Cov

(
s(X),

∂ log L(θ; X)
∂θ

))2

= ρ2V (s(X)) V
(
∂ log L(θ; X)

∂θ

)

≤ V (s(X)) V
(
∂ log L(θ; X)

∂θ

)
,
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where ρ denotes the correlation coefficient between s(X) and
∂ log L(θ; X)

∂θ
, i.e.,

ρ =

Cov
(
s(X),

∂ log L(θ; X)
∂θ

)

√
V (s(X))

√
V

(
∂ log L(θ; X)

∂θ

) .

Note that |ρ| ≤ 1.

Therefore, we have the following inequality:

(
∂E(s(X))

∂θ

)2

≤ V(s(X)) V
(
∂ log L(θ; X)

∂θ

)
,

i.e.,

V(s(X)) ≥

(
∂E(s(X))

∂θ

)2

V
(
∂ log L(θ; X)

∂θ

)

136



Especially, when E(s(X)) = θ, i.e., when s(X) is an unbiased estimator of θ, the

numerator of the right-hand side leads to one.

Therefore, we obtain:

V(s(X)) ≥ 1

−E
(
∂2 log L(θ; X)

∂θ2

) = (I(θ))−1.

Even in the case where s(X) is a vector, the following inequality holds.

V(s(X)) ≥ (I(θ))−1,

where I(θ) is defined as:

I(θ) = −E
(
∂2 log L(θ; X)

∂θ∂θ′

)

= E
(
∂ log L(θ; X)

∂θ

∂ log L(θ; X)
∂θ′

)
= V

(
∂ log L(θ; X)

∂θ

)
.
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The variance of any unbiased estimator of θ is larger than or equal to (I(θ))−1.

Thus, (I(θ))−1 results in the lower bound of the variance of any unbiased esti-

mator of θ.

6. Asymptotic Normality of MLE:

Let θ̃ be MLE of θ.

As n goes to infinity, we have the following result:

√
n(θ̃ − θ) −→ N

0, lim
n→∞

(
I(θ)
n

)−1 ,

where it is assumed that lim
n→∞

(
I(θ)
n

)
converges.

−→ The proof will be shown later.
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That is, when n is large, θ̃ is approximately distributed as follows:

θ̃ ∼ N
(
θ, (I(θ))−1

)
.

Suppose that s(X) = θ̃.

When n is large, V(s(X)) is approximately equal to (I(θ))−1.

7. Optimization (最適化):

MLE of θ results in the following maximization problem:

max
θ

log L(θ; x).

We often have the case where the solution of θ is not derived in closed form.

=⇒ Optimization procedure

0 =
∂ log L(θ; x)

∂θ
=
∂ log L(θ∗; x)

∂θ
+
∂2 log L(θ∗; x)

∂θ∂θ′
(θ − θ∗).
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Solving the above equation with respect to θ, we obtain the following:

θ = θ∗ −
(
∂2 log L(θ∗; x)

∂θ∂θ′

)−1
∂ log L(θ∗; x)

∂θ
.

Replace the variables as follows:

θ −→ θ(i+1)

θ∗ −→ θ(i)

Then, we have:

θ(i+1) = θ(i) −
(
∂2 log L(θ(i); x)

∂θ∂θ′

)−1
∂ log L(θ(i); x)

∂θ
.

=⇒ Newton-Raphson method (ニュートン・ラプソン法)

Replacing
∂2 log L(θ(i); x)

∂θ∂θ′
by E

(
∂2 log L(θ(i); x)

∂θ∂θ′

)
, we obtain the following op-
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timization algorithm:

θ(i+1) = θ(i) −
(
E

(
∂2 log L(θ(i); x)

∂θ∂θ′

))−1
∂ log L(θ(i); x)

∂θ

= θ(i) +
(
I(θ(i))

)−1 ∂ log L(θ(i); x)
∂θ

=⇒Method of Scoring (スコア法)
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9.1 MLE: The Case of Single Regression Model

The regression model:

yi = β1 + β2xi + ui,

1. ui ∼ N(0, σ2) is assumed.

2. The density function of ui is:

f (ui) =
1√

2πσ2
exp

(
− 1

2σ2 u2
i

)
.

Because u1, u2, · · · , un are mutually independently distributed, the joint density

function of u1, u2, · · · , un is written as:

f (u1, u2, · · · , un) = f (u1) f (u2) · · · f (un)

=
1

(2πσ2)n/2 exp

−
1

2σ2

n∑

i=1

u2
i
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3. Using the transformation of variable (ui = yi − β1 − β2xi), the joint density

function of y1, y2, · · · , yn is given by:

f (y1, y2, · · · , yn) =
1

(2πσ2)n/2 exp

−
1

2σ2

n∑

i=1

(yi − β1 − β2xi)2



≡ L(β1, β2, σ
2|y1, y2, · · · , yn).

L(β1, β2, σ
2|y1, y2, · · · , yn) is called the likelihood function.

log L(β1, β2, σ
2|y1, y2, · · · , yn) is called the log-likelihood function.

log L(β1, β2, σ
2|y1, y2, · · · , yn)

= −n
2

log(2π) − n
2

log(σ2) − 1
2σ2

n∑

i=1

(yt − β1 − β2xi)2
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4. Transformation of Variable (変数変換) — Review:

Suppose that the density function of a random variable X is fx(x).

Defining X = g(Y), the density function of Y , fy(y), is given by:

fy(y) = fx(g(y))
∣∣∣∣∣
dg(y)

dy

∣∣∣∣∣ .

In the case where X and g(Y) are n × 1 vectors,
∣∣∣∣∣
dg(y)

dy

∣∣∣∣∣ should be replaced by
∣∣∣∣∣
∂g(y)
∂y′

∣∣∣∣∣, which is an absolute value of a determinant of the matrix
∂g(y)
∂y′

.
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Example: When X ∼ U(0, 1), derive the density function of Y = − log(X).

fx(x) = 1

X = exp(−Y) is obtained.

Therefore, the density function of Y , fy(y), is given by:

fy(y) =

∣∣∣∣∣
dx
dy

∣∣∣∣∣ fx(g(y)) = | − exp(−y)| = exp(−y)
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5. [Going back to 3]: Given the observed data y1, y2, · · · , yn, the likelihood func-

tion L(β1, β2, σ2|y1, y2, · · ·, yn), or the log-likelihood function log L(β1, β2,

σ2|y1, y2, · · ·, yn) is maximized with respect to (β1, β2, σ2).

Solve the following three simultaneous equations:

∂ log L(β1, β2, σ
2|y1, y2, · · · , yn)

∂β1
=

1
σ2

n∑

i=1

(yi − β1 − β2xi) = 0,

∂ log L(β1, β2, σ
2|y1, y2, · · · , yn)

∂β2
=

1
σ2

n∑

i=1

(yi − β1 − β2xi)xi = 0,

∂ log L(β1, β2, σ
2|y1, y2, · · · , yn)

∂σ2 = −n
2

1
σ2 +

1
2σ4

n∑

i=1

(yi − β1 − β2xi)2 = 0.

The solutions of (β1, β2, σ2) are called the maximum likelihood estimates,

denoted by (β̃1, β̃2, σ̃2).
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