3. Replacing *x* by *X*, we otain the maximum likelihood **estimator** (MLE, which is the same word as the maximum likelihood **estimate**).

That is, MLE of θ satisfies the following two conditions:

(a)
$$\frac{\partial \log L(\theta; X)}{\partial \theta} = 0.$$
 \Longrightarrow Solution of θ : $\tilde{\theta} = \tilde{\theta}(X)$

- (b) $\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}$ is a negative definite matrix.
- 4. **Fisher's information matrix** (フィッシャーの情報行列) or simply **information matrix**, denoted by $I(\theta)$, is given by:

$$I(\theta) = -E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right),$$

where we have the following equality:

$$-\mathrm{E}\Big(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\Big) = \mathrm{E}\Big(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\Big) = \mathrm{V}\Big(\frac{\partial \log L(\theta; X)}{\partial \theta}\Big)$$

Note that $E(\cdot)$ and $V(\cdot)$ are expected with respect to X.

Proof of the above equality:

$$\int L(\theta; x) \mathrm{d}x = 1$$

Take a derivative with respect to θ .

$$\int \frac{\partial L(\theta; x)}{\partial \theta} \mathrm{d}x = 0$$

(We assume that (i) the domain of x does not depend on θ and (ii) the derivative $\frac{\partial L(\theta; x)}{\partial \theta}$ exists.)

Rewriting the above equation, we obtain:

$$\int \frac{\partial \log L(\theta; x)}{\partial \theta} L(\theta; x) dx = 0,$$

i.e.,

$$E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0.$$

Again, differentiating the above with respect to θ , we obtain:

$$\begin{split} &\int \frac{\partial^2 \log L(\theta;x)}{\partial \theta \partial \theta'} L(\theta;x) \mathrm{d}x + \int \frac{\partial \log L(\theta;x)}{\partial \theta} \frac{\partial L(\theta;x)}{\partial '\theta} \mathrm{d}x \\ &= \int \frac{\partial^2 \log L(\theta;x)}{\partial \theta \partial \theta'} L(\theta;x) \mathrm{d}x + \int \frac{\partial \log L(\theta;x)}{\partial \theta} \frac{\partial \log L(\theta;x)}{\partial \theta'} L(\theta;x) \mathrm{d}x \\ &= \mathrm{E}\Big(\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}\Big) + \mathrm{E}\Big(\frac{\partial \log L(\theta;X)}{\partial \theta} \frac{\partial \log L(\theta;X)}{\partial \theta'}\Big) = 0. \end{split}$$

Therefore, we can derive the following equality:

$$-\mathrm{E}\left(\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}\right) = \mathrm{E}\left(\frac{\partial \log L(\theta;X)}{\partial \theta} \frac{\partial \log L(\theta;X)}{\partial \theta'}\right) = \mathrm{V}\left(\frac{\partial \log L(\theta;X)}{\partial \theta}\right),$$

where the second equality utilizes $E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0$.

5. **Cramer-Rao Lower Bound** (クラメール・ラオの下限) is given by: $(I(\theta))^{-1}$.

Suppose that an estimator of θ is given by s(X).

The expectation of s(X) is:

$$E(s(X)) = \int s(x)L(\theta; x)dx.$$

Differentiating the above with respect to θ ,

$$\frac{\partial E(s(X))}{\partial \theta} = \int s(x) \frac{\partial L(\theta; x)}{\partial \theta} dx = \int s(x) \frac{\partial \log L(\theta; x)}{\partial \theta} L(\theta; x) dx$$
$$= Cov \left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta} \right)$$

For simplicity, let s(X) and θ be scalars.

Then,

$$\left(\frac{\partial E(s(X))}{\partial \theta}\right)^{2} = \left(\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta}\right)\right)^{2} = \rho^{2} V\left(s(X)\right) V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)$$

$$\leq V\left(s(X)\right) V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right),$$

where ρ denotes the correlation coefficient between s(X) and $\frac{\partial \log L(\theta; X)}{\partial \theta}$, i.e.,

$$\rho = \frac{\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta}\right)}{\sqrt{\operatorname{V}\left(s(X)\right)}\sqrt{\operatorname{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)}}.$$

Note that $|\rho| \leq 1$.

Therefore, we have the following inequality:

$$\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^2 \le \mathrm{V}(s(X)) \, \mathrm{V}\left(\frac{\partial \log L(\theta;X)}{\partial \theta}\right),\,$$

i.e.,

$$V(s(X)) \ge \frac{\left(\frac{\partial E(s(X))}{\partial \theta}\right)^2}{V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)}$$

Especially, when $E(s(X)) = \theta$, i.e., when s(X) is an unbiased estimator of θ , the numerator of the right-hand side leads to one.

Therefore, we obtain:

$$V(s(X)) \ge \frac{1}{-E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta^2}\right)} = (I(\theta))^{-1}.$$

Even in the case where s(X) is a vector, the following inequality holds.

$$V(s(X)) \ge (I(\theta))^{-1}$$
,

where $I(\theta)$ is defined as:

$$I(\theta) = -E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right)$$
$$= E\left(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\right) = V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right).$$

The variance of any unbiased estimator of θ is larger than or equal to $(I(\theta))^{-1}$.

Thus, $(I(\theta))^{-1}$ results in the lower bound of the variance of any unbiased estimator of θ .

6. Asymptotic Normality of MLE:

Let $\tilde{\theta}$ be MLE of θ .

As n goes to infinity, we have the following result:

$$\sqrt{n}(\tilde{\theta} - \theta) \longrightarrow N\left(0, \lim_{n \to \infty} \left(\frac{I(\theta)}{n}\right)^{-1}\right),$$

where it is assumed that $\lim_{n\to\infty} \left(\frac{I(\theta)}{n}\right)$ converges.

→ The proof will be shown later.

That is, when *n* is large, $\tilde{\theta}$ is approximately distributed as follows:

$$\tilde{\theta} \sim N(\theta, (I(\theta))^{-1}).$$

Suppose that $s(X) = \tilde{\theta}$.

When *n* is large, V(s(X)) is approximately equal to $(I(\theta))^{-1}$.

7. Optimization (最適化):

MLE of θ results in the following maximization problem:

$$\max_{\theta} \log L(\theta; x).$$

We often have the case where the solution of θ is not derived in closed form.

⇒ Optimization procedure

$$0 = \frac{\partial \log L(\theta; x)}{\partial \theta} = \frac{\partial \log L(\theta^*; x)}{\partial \theta} + \frac{\partial^2 \log L(\theta^*; x)}{\partial \theta \partial \theta'} (\theta - \theta^*).$$

Solving the above equation with respect to θ , we obtain the following:

$$\theta = \theta^* - \left(\frac{\partial^2 \log L(\theta^*; x)}{\partial \theta \partial \theta'}\right)^{-1} \frac{\partial \log L(\theta^*; x)}{\partial \theta}.$$

Replace the variables as follows:

$$\theta \longrightarrow \theta^{(i+1)}$$
 $0^* \qquad o(i)$

Then, we have:

$$\theta^{(i+1)} = \theta^{(i)} - \left(\frac{\partial^2 \log L(\theta^{(i)}; x)}{\partial \theta \partial \theta'}\right)^{-1} \frac{\partial \log L(\theta^{(i)}; x)}{\partial \theta}.$$

⇒ Newton-Raphson method (ニュートン・ラプソン法)

Replacing
$$\frac{\partial^2 \log L(\theta^{(i)}; x)}{\partial \theta \partial \theta'}$$
 by $E\left(\frac{\partial^2 \log L(\theta^{(i)}; x)}{\partial \theta \partial \theta'}\right)$, we obtain the following op-

timization algorithm:

$$\begin{split} \theta^{(i+1)} &= \theta^{(i)} - \left(\mathbb{E}\left(\frac{\partial^2 \log L(\theta^{(i)}; x)}{\partial \theta \partial \theta'}\right) \right)^{-1} \frac{\partial \log L(\theta^{(i)}; x)}{\partial \theta} \\ &= \theta^{(i)} + \left(I(\theta^{(i)}) \right)^{-1} \frac{\partial \log L(\theta^{(i)}; x)}{\partial \theta} \end{split}$$

⇒ Method of Scoring (スコア法)

9.1 MLE: The Case of Single Regression Model

The regression model:

$$y_i = \beta_1 + \beta_2 x_i + u_i,$$

- 1. $u_i \sim N(0, \sigma^2)$ is assumed.
- 2. The density function of u_i is:

$$f(u_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}u_i^2\right).$$

Because u_1, u_2, \dots, u_n are mutually independently distributed, the joint density function of u_1, u_2, \dots, u_n is written as:

$$f(u_1, u_2, \dots, u_n) = f(u_1) f(u_2) \dots f(u_n)$$

$$= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n u_i^2\right)$$

3. Using the transformation of variable $(u_i = y_i - \beta_1 - \beta_2 x_i)$, the joint density function of y_1, y_2, \dots, y_n is given by:

$$f(y_1, y_2, \dots, y_n) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta_1 - \beta_2 x_i)^2\right)$$
$$\equiv L(\beta_1, \beta_2, \sigma^2 | y_1, y_2, \dots, y_n).$$

 $L(\beta_1, \beta_2, \sigma^2 | y_1, y_2, \dots, y_n)$ is called the likelihood function.

 $\log L(\beta_1, \beta_2, \sigma^2 | y_1, y_2, \dots, y_n)$ is called the log-likelihood function.

$$\log L(\beta_1, \beta_2, \sigma^2 | y_1, y_2, \dots, y_n)$$

$$= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_1 - \beta_2 x_i)^2$$

4. Transformation of Variable (变数变换) — Review:

Suppose that the density function of a random variable *X* is $f_x(x)$.

Defining X = g(Y), the density function of Y, $f_y(y)$, is given by:

$$f_y(y) = f_x(g(y)) \left| \frac{\mathrm{d}g(y)}{\mathrm{d}y} \right|.$$

In the case where *X* and g(Y) are $n \times 1$ vectors, $\left| \frac{dg(y)}{dy} \right|$ should be replaced by $\left| \frac{\partial g(y)}{\partial y'} \right|$, which is an absolute value of a determinant of the matrix $\frac{\partial g(y)}{\partial y'}$.

Example: When $X \sim U(0, 1)$, derive the density function of $Y = -\log(X)$.

$$f_x(x) = 1$$

 $X = \exp(-Y)$ is obtained.

Therefore, the density function of Y, $f_y(y)$, is given by:

$$f_y(y) = \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right| f_x(g(y)) = |-\exp(-y)| = \exp(-y)$$

5. **[Going back to 3]:** Given the observed data y_1, y_2, \dots, y_n , the likelihood function $L(\beta_1, \beta_2, \sigma^2|y_1, y_2, \dots, y_n)$, or the log-likelihood function $\log L(\beta_1, \beta_2, \sigma^2|y_1, y_2, \dots, y_n)$ is maximized with respect to $(\beta_1, \beta_2, \sigma^2)$.

Solve the following three simultaneous equations:

$$\frac{\partial \log L(\beta_1, \beta_2, \sigma^2 | y_1, y_2, \cdots, y_n)}{\partial \beta_1} = \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \beta_1 - \beta_2 x_i) = 0,$$

$$\frac{\partial \log L(\beta_1, \beta_2, \sigma^2 | y_1, y_2, \cdots, y_n)}{\partial \beta_2} = \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \beta_1 - \beta_2 x_i) x_i = 0,$$

$$\frac{\partial \log L(\beta_1, \beta_2, \sigma^2 | y_1, y_2, \cdots, y_n)}{\partial \sigma^2} = -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (y_i - \beta_1 - \beta_2 x_i)^2 = 0.$$

The solutions of $(\beta_1, \beta_2, \sigma^2)$ are called the maximum likelihood estimates, denoted by $(\tilde{\beta}_1, \tilde{\beta}_2, \tilde{\sigma}^2)$.