3. Replacing x by X, we otain the maximum likelihood estimator (MLE, which

is the same word as the maximum likelihood estimate).

That is, MLE of 6 satisfies the following two conditions:

dlog L(9; X - ..
(a) % —0. = Solutionof6: 8= H(X)
0 log L(6; X
(b) % is a negative definite matrix.

4. Fisher’s information matrix (U OO O 0O 0O 0O 0O O O O) or simply informa-
tion matrix, denoted by /(6), is given by:

0% log L(6; X)
[0) = -E|—————
@ = Ao )
where we have the following equality:
0% log L(6; X) dlog L(6; X) 0log L(6; X) dlog L(6; X)
-E(————)=E =V
e )N e VT )

Note that E(-) and V() are expected with respect to X.
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Proof of the above equality:

f L(9; x)dx =1

Take a derivative with respect to 6.

OL(o:
f ©: 40
00

(We assume that (i) the domain of x does not depend on 6 and (ii) the derivative
0L(0; x)
00

Rewriting the above equation, we obtain:

f 0log L(6; x)
00

exists.)

L(6; x)dx = 0,

1.e.,
E(W) 0.
06
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Again, differentiating the above with respect to 6, we obtain:

& logL(#;x) dlog L(6; x) OL(6; x)
f “ae08 L(6; x)dx + f 50 50 dx

0% log L(6; x) dlog L(6; x) 8 log L(H; x)
= | ——==2""19:
f deoy DA+ f 80 o0
0% log L(6; X) dlog L(6; X) dlog L(6; X)
-E E
(e )+ E—2 Py

L(6; x)dx

)=o0.

Therefore, we can derive the following equality:

0% log L(6; X) dlog L(6; X) dlog L(6; X) dlog L(6; X)
-E|———|=E =V|————=],
06000’ 00 oo 00

Olog L(6; X
where the second equality utilizes E (%) =0.

5. Cramer-Rao Lower Bound (D00 000000 00O)is given by: (1(8))~.

Suppose that an estimator of 6 is given by s(X).
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The expectation of s(X) is:

E(s(X)) = f s(x)L(0; x)dx.

Differentiating the above with respect to 6,

OE(s(X)) oLO;x) , dlog L(6;x)
50 = f s(x)—ae dx = f s(x)—ae L(6; x)dx

_ Cov (s(X), dlog L(6; X))

00

For simplicity, let s(X) and 6 be scalars.

Then,
IE(s(X)\ dlogLG; X)\\* dlog L(6; X)
( o ) —(COV(S(X), T)) =p V(s(X))V(T)
<V (s(X)V (—a log BLH(Q; X)) ,
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where p denotes the correlation coefficient between s(X) and

Cov (S(X), W)

06
dlog L(6’ X))

p:

W\/

Note that |p| < 1.

Therefore, we have the following inequality:

(aE(s<X>) ?

X ) < V(s(X)) V(610g L(6; X)),

00

1.e.,

(aEcs(X)>)2
V(s(X)) =

v (8 log L(#; X))
00
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Especially, when E(s(X)) = 6, i.e., when s(X) is an unbiased estimator of 6, the

numerator of the right-hand side leads to one.

Therefore, we obtain:

1

B 0% log L(6; X)
062

V(s(X)) > = (1))~

Even in the case where s(X) is a vector, the following inequality holds.
V(s(X)) = (1),

where 1(0) is defined as:

0% log L(6; X)
16)= _E( 9000’ )
_E 0log L(6; X) 0log L(6; X) _v dlog L(6; X)
- 90 00’ - 90 '
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The variance of any unbiased estimator of  is larger than or equal to (1(6))~'.
Thus, (1(6))~! results in the lower bound of the variance of any unbiased esti-
mator of 6.

. Asymptotic Normality of MLE:

Let 8 be MLE of 6.
As n goes to infinity, we have the following result:

-1
Vn@ -6 — N[O, 1im(@) ]

n—co\ n

10
where it is assumed that lim (Q) converges.

n—oo\ n

— The proof will be shown later.
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That is, when 7 is large, 6 is approximately distributed as follows:

G~N (9, (1(9))—1) .

Suppose that s(X) = 6.

When n is large, V(s(X)) is approximately equal to (1(9))_].

. Optimization (O O O ):

MLE of 6 results in the following maximization problem:

max log L(6; x).
0

‘We often have the case where the solution of 0 is not derived in closed form.

= Optimization procedure

0= dlog L(6;x) _ dlog L(6"; x) . 8% log L(6"; x)
B 90 B 90 0006’

@—6).

139



Solving the above equation with respect to 6, we obtain the following:

0 g P log L(0";x)\ ' 8log L(6"; x)
- 9006’ 9
Replace the variables as follows:

0 SN 9(i+1)

g — 0"

Then, we have:

.\ 7! i).
g+ — g _ (82 log L(Q(),X)) dlog L(G(),x).

0000’ 00
=— Newton-Raphson method (I 0 0O OO0 O0OOO)

0% log L(6%; x) v E (82 log L(67; x)

9090' 000 ), we obtain the following op-

Replacing
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timization algorithm:

gi+h — g _ (E (82 log L(6"; x)))—l 9log LEEP: x)

0006 00
-1 dlog L(6"; x)

=07+ (16")) 0

— Method of Scoring (I 0 O [0)
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9.1 MLE: The Case of Single Regression Model

The regression model:

yi =1+ Baxi + u;,
1. u; ~ N(0,0?) is assumed.

2. The density function of u; is:

1 I,
u;) = exp|—=—=u;|.
Because uy, u, - - -, u, are mutually independently distributed, the joint density
function of u;, u,, - - -, u,, 1s written as:

S, up, - - un) = fQun) fua) - - - f ()

1 1 &,
e 5

i=1
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3. Using the transformation of variable (v; = y; — 81 — B2x;), the joint density

function of y;, y,- -+, y, 1s given by:

1 1 ©
fOLY2 Y0 = WeXP T252 Z(yi - Bi —ﬁzxi)2
i=1

= L(ﬁl’ﬁ2’ 0'2|y1,)72, Tt ,)’n)

L(B1, B2, 72|y1, V2, - - -, yp) is called the likelihood function.

log L(B1, B2, 02y1, y2, - -, ¥) is called the log-likelihood function.

log L(B1, B2, Y1, Y2, - » V)

__n n 2 1 X 2
=-3 log(2n) — 3 log(c*) — = ;()’r = B1 = Baxi)
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4. Transformation of Variable (O O O 0 ) — Review:
Suppose that the density function of a random variable X is f,(x).

Defining X = g(Y), the density function of Y, f,(y), is given by:

dg(») _

£10) = fx(g(y))‘ £

dg(y)
dy

, which is an absolute value of a determinant of the matrix

In the case where X and g(Y) are n X 1 vectors, should be replaced by

ogly
dy’

dg(y)
oy’
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Example: When X ~ U(0, 1), derive the density function of ¥ = —log(X).

fulx) =1

X = exp(-Y) is obtained.

Therefore, the density function of Y, f,(y), is given by:

f:(g(y) = | — exp(=y)| = exp(-y)

) = ‘j—;‘
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5. [Going back to 3]: Given the observed data yy, y,, - - -, y,, the likelihood func-
tion L(B;, Ba, azlyl, Y2, =+, yn), or the log-likelihood function log L(B;, [,

o2|y1, Y2, - -, yn) is maximized with respect to (8;, 82, 0°%).

Solve the following three simultaneous equations:

dlog L(B1, Bas T2y1, Y2, s V) 1 <
= - i - i) =0,
o - ;(y B1 = Boxi)

alog L(ﬁl’ﬁZa 0-2|ylay29 e 9yn) —
9B>

1 n
= Z(yi = pBi = Bax)x; =0,
i=1

dlog LB1.Bos Py yas--uy) _ n 1
902 202

1 n
= Zlm —B1 = Box:)’ = 0.

The solutions of (8;, 8, o) are called the maximum likelihood estimates,

denoted by (B, B>, 57).
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