If the following holds,

$$\lim_{n\to\infty} P(|Z_n-\theta|<\epsilon)=1,$$

for any positive ϵ , then we say that Z_n converges to θ in probability.

 θ is called a **probability limit** (確率極限) of Z_n .

plim $Z_n = \theta$.

- (b) Let θ̂_n be an estimator of parameter θ.
 If θ̂_n converges to θ in probability, we say that θ̂_n is a consistent estimator of θ.
- 3. A General Case of Chebyshev's Inequality:

For $g(X) \ge 0$,

$$P(g(X) \ge k) \le \frac{\mathrm{E}(g(X))}{k},$$

178

where *k* is a positive constant.

4. **Example:** For a random variable *X*, set $g(X) = (X - \mu)'(X - \mu)$, $E(X) = \mu$ and $V(X) = \Sigma$.

Then, we have the following inequality:

$$P((X-\mu)'(X-\mu) \ge k) \le \frac{\operatorname{tr}(\Sigma)}{k}.$$

Note as follows:

$$E((X - \mu)'(X - \mu)) = E(tr((X - \mu)'(X - \mu))) = E(tr((X - \mu)(X - \mu)'))$$
$$= tr(E((X - \mu)(X - \mu)')) = tr(\Sigma).$$

5. Example 1 (Univariate Case):

Suppose that $X_i \sim (\mu, \sigma^2), i = 1, 2, \cdots, n$.

Then, the sample average \overline{X} is a consistent estimator of μ .

Proof:

Note that
$$g(\overline{X}) = (\overline{X} - \mu)^2$$
, $\epsilon^2 = k$, $E(g(\overline{X})) = V(\overline{X}) = \frac{\sigma^2}{n}$.

Use Chebyshev's inequality.

If $n \to \infty$, $P(|\overline{X} - \mu| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2} \longrightarrow 0$, for any ϵ .

That is. for any ϵ ,

$$\lim_{n\to\infty} P(|\overline{X}-\mu|<\epsilon)=1.$$

 \implies Chebyshev's inequality

6. Example 2 (Multivariate Case):

Suppose that $X_i \sim (\mu, \Sigma)$, $i = 1, 2, \dots, n$.

Then, the sample average \overline{X} is a consistent estimator of μ .

Proof:

Note that
$$g(\overline{X}) = (\overline{X} - \mu)'(\overline{X} - \mu), \epsilon^2 = k$$
, $E(g(\overline{X})) = tr(V(\overline{X})) = tr(\frac{1}{n}\Sigma)$.
Use Chebyshev's inequality.

If $n \longrightarrow \infty$,

$$P((\overline{X} - \mu)'(\overline{X} - \mu) \ge k) = P(|\overline{X} - \mu| \ge \epsilon) \le \frac{\operatorname{tr}(\Sigma)}{n\epsilon^2} \longrightarrow 0, \text{ for any positive } \epsilon.$$

That is. for any positive ϵ , $\lim_{n \to \infty} P((\overline{X} - \mu)'(\overline{X} - \mu) < k) = 1$.

Note that $|\overline{X} - \mu| = \sqrt{(\overline{X} - \mu)'(\overline{X} - \mu)}$, which is the distance between X and μ .

 \implies Chebyshev's inequality

7. Some Formulas:

Let X_n and Y_n be the random variables which satisfy plim $X_n = c$ and plim $Y_n = d$. Then,

- (a) plim $(X_n + Y_n) = c + d$
- (b) plim $X_n Y_n = cd$
- (c) plim $X_n/Y_n = c/d$ for $d \neq 0$
- (d) plim $g(X_n) = g(c)$ for a function $g(\cdot)$
 - ⇒ Slutsky's Theorem (スルツキー定理)

8. Central Limit Theorem (中心極限定理)

Univariate Case: X_1, X_2, \dots, X_n are mutually independently and identically distributed as $X_i \sim (\mu, \sigma^2)$.

Then,

$$\frac{\overline{X} - \mathrm{E}(\overline{X})}{\sqrt{\mathrm{V}(\overline{X})}} = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \longrightarrow N(0, 1),$$

which implies

$$\sqrt{n}(\overline{X}-\mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0,\sigma^2).$$

Multivariate Case: X_1, X_2, \dots, X_n are mutually independently and identically distributed as $X_i \sim (\mu, \Sigma)$.

Then,

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(X_{i}-\mu) \longrightarrow N(0,\Sigma)$$

9. Central Limit Theorem (Generalization)

 X_1, X_2, \dots, X_n are mutually independently and identically distributed as $X_i \sim (\mu, \Sigma_i)$.

Then,

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(X_{i}-\mu) \longrightarrow N(0,\Sigma),$$

where

$$\Sigma = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \Sigma_i \right).$$

10. **Definition:** Let $\hat{\theta}_n$ be a consistent estimator of θ .

Suppose that $\sqrt{n}(\hat{\theta}_n - \theta)$ converges to $N(0, \Sigma)$ in distribution.

Then, we say that $\hat{\theta}_n$ has an **asymptotic distribution** (漸近分布): $N(\theta, \Sigma/n)$.

10.1 MLE: Asymptotic Properties

1. X_1, X_2, \dots, X_n are random variables with density function $f(x; \theta)$.

Let $\hat{\theta}_n$ be a maximum likelihood estimator of θ .

Then, under some **regularity conditions**. $\hat{\theta}_n$ is a consistent estimator of θ and the asymptotic distribution of $\sqrt{n}(\hat{\theta} - \theta)$ is given by: $N\left(0, \lim\left(\frac{I(\theta)}{n}\right)^{-1}\right)$.

2. Regularity Conditions:

(a) The domain of X_i does not depend on θ .

- (b) There exists at least third-order derivative of *f*(*x*; *θ*) with respect to *θ*, and their derivatives are finite.
- 3. Thus, MLE is

(i) consistent,

(ii) asymptotically normal, and

(iii) asymptotically efficient.

Proof: The log-likelihood function is given by:

$$\log L(\theta) = \log \prod_{i=1}^{n} f(X_i; \theta) = \sum_{i=1}^{n} \log f(X_i; \theta)$$

Note that the MLE $\tilde{\theta}$ satisfies:

$$\frac{\partial \log L(\tilde{\theta})}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \log f(X_i; \tilde{\theta})}{\partial \theta} = 0.$$

 X_i is a random variable.

On the other hand, the integration of $L(\theta)$ with respect to $x = (x_1, x_2, \dots, x_n)$ is one, because $L(\theta)$ is a joint distribution of x_1, x_2, \dots, x_n . Therefore, we have:

$$\int L(\theta) \mathrm{d}x = 1.$$

Taking the first-derivative of the above equation on both sides with respect to θ , we obtain:

$$\int \frac{\partial L(\theta)}{\partial \theta} \mathrm{d}x = 0,$$

which is rewritten as:

$$\int \frac{\partial L(\theta)}{\partial \theta} dx = \int \frac{\partial \log L(\theta)}{\partial \theta} L(\theta) dx = E\left(\frac{\partial \log L(\theta)}{\partial \theta}\right) = 0.$$

Taking the derivative with respective θ , again (the second-derivative of $\int L(\theta) dx = 1$

on both sides with respect to θ), we have:

$$\int \frac{\partial^2 \log L(\theta)}{\partial \theta^2} L(\theta) dx + \int \frac{\partial \log L(\theta)}{\partial \theta} \frac{\partial \log L(\theta)}{\partial \theta'} L(\theta) dx = 0,$$

which is rewritten as follows:

$$-\int \frac{\partial^2 \log L(\theta)}{\partial \theta^2} L(\theta) dx = \int \frac{\partial \log L(\theta)}{\partial \theta} \frac{\partial \log L(\theta)}{\partial \theta'} L(\theta) dx.$$

That is, we can derive the following:

$$-E\left(\frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'}\right) = E\left(\frac{\partial \log L(\theta)}{\partial \theta} \frac{\partial \log L(\theta)}{\partial \theta'}\right) = V\left(\frac{\partial \log L(\theta)}{\partial \theta}\right) \equiv I(\theta),$$

where the second equality holds because of $E\left(\frac{\partial \log L(\theta)}{\partial \theta}\right) = 0.$
 $I(\theta)$ is called Eicher's information matrix (or simply information matrix).

 $I(\theta)$ is called Fisher's information matrix (or simply, information matrix).

Thus, the first-derivative of $L(\theta)$ is distributed as mean zero and variance $I(\theta)$, i.e.,

$$\frac{\partial \log L(\theta)}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \log f(X_i; \theta)}{\partial \theta} \sim (0, I(\theta))$$

Note that we do not know the distribution of the first-derivative of $L(\theta)$, because we do not specify functional form of $f(\cdot)$

Using the central limit theorem (generalization) shown above, asymptotically we obtain the following distribution:

$$\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\partial \log f(X_i; \theta)}{\partial \theta} \longrightarrow N(0, \Sigma),$$

where $\Sigma = \lim_{n \to \infty} \left(\frac{1}{n} I(\theta)\right).$

Let $\tilde{\theta}$ be the maximum likelihood estimator. Linearizing $\frac{\partial \log L(\tilde{\theta})}{\partial \theta}$ around $\tilde{\theta} = \theta$, we obtain: $0 = \frac{1}{\sqrt{n}} \frac{\partial \log L(\tilde{\theta})}{\partial \theta} \approx \frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta} + \frac{1}{\sqrt{n}} \frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'} (\tilde{\theta} - \theta),$

where the rest of terms (i.e., the second-order term, the third-order term, ...) are ig-

nored, which implies that the distribution of $\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta}$ is asymptotically equiva-

lent to that of
$$\frac{1}{\sqrt{n}} \frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'} (\tilde{\theta} - \theta).$$

We have already known the distribution of $\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta}$ as follows:

$$\frac{1}{\sqrt{n}}\frac{\partial \log L(\theta)}{\partial \theta} \approx -\frac{1}{\sqrt{n}}\frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'}(\tilde{\theta} - \theta) = \left(-\frac{1}{n}\frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'}\right)\sqrt{n}(\tilde{\theta} - \theta) \longrightarrow N(0, \Sigma).$$

Note as follows:

$$-\frac{1}{n}\frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'} \longrightarrow \lim_{n \to \infty} \left(\frac{1}{n} \mathbb{E}\left(-\frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'}\right)\right) = \lim_{n \to \infty} \left(\frac{1}{n} I(\theta)\right) = \Sigma.$$

Thus, $\left(-\frac{1}{n}\frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'}\right)\sqrt{n}(\tilde{\theta}-\theta)$ asymptotically has the same distribution as $\sum \sqrt{n}(\tilde{\theta}-\theta)$.

Therefore,

$$V(\Sigma \sqrt{n}(\widehat{\theta} - \theta)) = \Sigma V(\sqrt{n}(\widehat{\theta} - \theta))\Sigma' \longrightarrow \Sigma.$$

Note that $\Sigma = \Sigma'$. Thus, we have the asymptotic variance of $\sqrt{n}(\hat{\theta} - \theta)$ as follows:

$$V(\sqrt{n}(\widehat{\theta} - \theta)) \longrightarrow \Sigma^{-1} \Sigma \Sigma^{-1} = \Sigma^{-1}.$$

Finally, we obtain:

$$\sqrt{n}(\widehat{\theta} - \theta) \longrightarrow N(0, \Sigma^{-1}).$$