If the following holds，

$$
\lim _{n \rightarrow \infty} P\left(\left|Z_{n}-\theta\right|<\epsilon\right)=1,
$$

for any positive ϵ ，then we say that Z_{n} converges to θ in probability．
θ is called a probability limit（確率極限）of Z_{n} ．

$$
\operatorname{plim} Z_{n}=\theta .
$$

（b）Let $\hat{\theta}_{n}$ be an estimator of parameter θ ．
If $\hat{\theta}_{n}$ converges to θ in probability，we say that $\hat{\theta}_{n}$ is a consistent estimator of θ ．

3．A General Case of Chebyshev＇s Inequality：
For $g(X) \geq 0$,

$$
P(g(X) \geq k) \leq \frac{\mathrm{E}(g(X))}{k}
$$

where k is a positive constant.
4. Example: For a random variable X, set $g(X)=(X-\mu)^{\prime}(X-\mu), \mathrm{E}(X)=\mu$ and $\mathrm{V}(X)=\Sigma$.

Then, we have the following inequality:

$$
P\left((X-\mu)^{\prime}(X-\mu) \geq k\right) \leq \frac{\operatorname{tr}(\Sigma)}{k} .
$$

Note as follows:

$$
\begin{aligned}
\mathrm{E}\left((X-\mu)^{\prime}(X-\mu)\right) & =\mathrm{E}\left(\operatorname{tr}\left((X-\mu)^{\prime}(X-\mu)\right)\right)=\mathrm{E}\left(\operatorname{tr}\left((X-\mu)(X-\mu)^{\prime}\right)\right) \\
& =\operatorname{tr}\left(\mathrm{E}\left((X-\mu)(X-\mu)^{\prime}\right)\right)=\operatorname{tr}(\Sigma) .
\end{aligned}
$$

5. Example 1 (Univariate Case):

Suppose that $X_{i} \sim\left(\mu, \sigma^{2}\right), i=1,2, \cdots, n$.
Then, the sample average \bar{X} is a consistent estimator of μ.

Proof:

Note that $g(\bar{X})=(\bar{X}-\mu)^{2}, \epsilon^{2}=k, \mathrm{E}(g(\bar{X}))=\mathrm{V}(\bar{X})=\frac{\sigma^{2}}{n}$.
Use Chebyshev's inequality.
If $n \longrightarrow \infty$,

$$
P(|\bar{X}-\mu| \geq \epsilon) \leq \frac{\sigma^{2}}{n \epsilon^{2}} \longrightarrow 0, \quad \text { for any } \epsilon
$$

That is. for any ϵ,

$$
\lim _{n \rightarrow \infty} P(|\bar{X}-\mu|<\epsilon)=1 .
$$

\Longrightarrow Chebyshev's inequality
6. Example 2 (Multivariate Case):

Suppose that $X_{i} \sim(\mu, \Sigma), i=1,2, \cdots, n$.
Then, the sample average \bar{X} is a consistent estimator of μ.
Proof:
Note that $g(\bar{X})=(\bar{X}-\mu)^{\prime}(\bar{X}-\mu), \epsilon^{2}=k, \mathrm{E}(g(\bar{X}))=\operatorname{tr}(\mathrm{V}(\bar{X}))=\operatorname{tr}\left(\frac{1}{n} \Sigma\right)$.
Use Chebyshev's inequality.
If $n \longrightarrow \infty$,

$$
P\left((\bar{X}-\mu)^{\prime}(\bar{X}-\mu) \geq k\right)=P(|\bar{X}-\mu| \geq \epsilon) \leq \frac{\operatorname{tr}(\Sigma)}{n \epsilon^{2}} \longrightarrow 0, \text { for any positive } \epsilon
$$

That is. for any positive $\epsilon, \lim _{n \rightarrow \infty} P\left((\bar{X}-\mu)^{\prime}(\bar{X}-\mu)<k\right)=1$.
Note that $|\bar{X}-\mu|=\sqrt{(\bar{X}-\mu)^{\prime}(\bar{X}-\mu)}$, which is the distance between X and μ.
\Longrightarrow Chebyshev's inequality

7．Some Formulas：

Let X_{n} and Y_{n} be the random variables which satisfy $\operatorname{plim} X_{n}=c$ and plim $Y_{n}=$ d ．Then，
（a） $\operatorname{plim}\left(X_{n}+Y_{n}\right)=c+d$
（b） $\operatorname{plim} X_{n} Y_{n}=c d$
（c） $\operatorname{plim} X_{n} / Y_{n}=c / d$ for $d \neq 0$
（d） $\operatorname{plim} g\left(X_{n}\right)=g(c)$ for a function $g(\cdot)$
\Longrightarrow Slutsky＇s Theorem（スルツキー定理）

8．Central Limit Theorem（中心極限定理）

Univariate Case：$\quad X_{1}, X_{2}, \cdots, X_{n}$ are mutually independently and identically distributed as $X_{i} \sim\left(\mu, \sigma^{2}\right)$ ．

Then，

$$
\frac{\bar{X}-\mathrm{E}(\bar{X})}{\sqrt{\mathrm{V}(\bar{X})}}=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \rightarrow N(0,1)
$$

which implies

$$
\sqrt{n}(\bar{X}-\mu)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(X_{i}-\mu\right) \longrightarrow N\left(0, \sigma^{2}\right) .
$$

Multivariate Case: $X_{1}, X_{2}, \cdots, X_{n}$ are mutually independently and identically distributed as $X_{i} \sim(\mu, \Sigma)$.

Then,

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(X_{i}-\mu\right) \longrightarrow N(0, \Sigma)
$$

9. Central Limit Theorem (Generalization)

$X_{1}, X_{2}, \cdots, X_{n}$ are mutually independently and identically distributed as $X_{i} \sim$ $\left(\mu, \Sigma_{i}\right)$.

Then,

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(X_{i}-\mu\right) \longrightarrow N(0, \Sigma)
$$

where

$$
\Sigma=\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{i=1}^{n} \Sigma_{i}\right) .
$$

10．Definition：Let $\hat{\theta}_{n}$ be a consistent estimator of θ ．
Suppose that $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)$ converges to $N(0, \Sigma)$ in distribution．
Then，we say that $\hat{\theta}_{n}$ has an asymptotic distribution（漸近分布）：$N(\theta, \Sigma / n)$ ．

10．1 MLE：Asymptotic Properties

1．$X_{1}, X_{2}, \cdots, X_{n}$ are random variables with density function $f(x ; \theta)$ ．
Let $\hat{\theta}_{n}$ be a maximum likelihood estimator of θ ．
Then，under some regularity conditions．$\hat{\theta}_{n}$ is a consistent estimator of θ and the asymptotic distribution of $\sqrt{n}(\hat{\theta}-\theta)$ is given by：$N\left(0, \lim \left(\frac{I(\theta)}{n}\right)^{-1}\right)$ ．

2．Regularity Conditions：
（a）The domain of X_{i} does not depend on θ ．
(b) There exists at least third-order derivative of $f(x ; \theta)$ with respect to θ, and their derivatives are finite.
3. Thus, MLE is
(i) consistent ,
(ii) asymptotically normal, and
(iii) asymptotically efficient.

Proof: The log-likelihood function is given by:

$$
\log L(\theta)=\log \prod_{i=1}^{n} f\left(X_{i} ; \theta\right)=\sum_{i=1}^{n} \log f\left(X_{i} ; \theta\right)
$$

Note that the MLE $\tilde{\theta}$ satisfies:

$$
\frac{\partial \log L(\tilde{\theta})}{\partial \theta}=\sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \tilde{\theta}\right)}{\partial \theta}=0
$$

X_{i} is a random variable.

On the other hand, the integration of $L(\theta)$ with respect to $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is one, because $L(\theta)$ is a joint distribution of $x_{1}, x_{2}, \cdots, x_{n}$. Therefore, we have:

$$
\int L(\theta) \mathrm{d} x=1
$$

Taking the first-derivative of the above equation on both sides with respect to θ, we obtain:

$$
\int \frac{\partial L(\theta)}{\partial \theta} \mathrm{d} x=0
$$

which is rewritten as:

$$
\int \frac{\partial L(\theta)}{\partial \theta} \mathrm{d} x=\int \frac{\partial \log L(\theta)}{\partial \theta} L(\theta) \mathrm{d} x=\mathrm{E}\left(\frac{\partial \log L(\theta)}{\partial \theta}\right)=0
$$

Taking the derivative with respective θ, again (the second-derivative of $\int L(\theta) \mathrm{d} x=1$
on both sides with respect to θ), we have:

$$
\int \frac{\partial^{2} \log L(\theta)}{\partial \theta^{2}} L(\theta) \mathrm{d} x+\int \frac{\partial \log L(\theta)}{\partial \theta} \frac{\partial \log L(\theta)}{\partial \theta^{\prime}} L(\theta) \mathrm{d} x=0
$$

which is rewritten as follows:

$$
-\int \frac{\partial^{2} \log L(\theta)}{\partial \theta^{2}} L(\theta) \mathrm{d} x=\int \frac{\partial \log L(\theta)}{\partial \theta} \frac{\partial \log L(\theta)}{\partial \theta^{\prime}} L(\theta) \mathrm{d} x .
$$

That is, we can derive the following:

$$
-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta^{\prime}}\right)=\mathrm{E}\left(\frac{\partial \log L(\theta)}{\partial \theta} \frac{\partial \log L(\theta)}{\partial \theta^{\prime}}\right)=\mathrm{V}\left(\frac{\partial \log L(\theta)}{\partial \theta}\right) \equiv I(\theta),
$$

where the second equality holds because of $\mathrm{E}\left(\frac{\partial \log L(\theta)}{\partial \theta}\right)=0$.
$I(\theta)$ is called Fisher's information matrix (or simply, information matrix).

Thus, the first-derivative of $L(\theta)$ is distributed as mean zero and variance $I(\theta)$, i.e.,

$$
\frac{\partial \log L(\theta)}{\partial \theta}=\sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta} \sim(0, I(\theta)) .
$$

Note that we do not know the distribution of the first-derivative of $L(\theta)$, because we do not specify functional form of $f(\cdot)$

Using the central limit theorem (generalization) shown above, asymptotically we obtain the following distribution:

$$
\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta} \longrightarrow N(0, \Sigma)
$$

where $\Sigma=\lim _{n \rightarrow \infty}\left(\frac{1}{n} I(\theta)\right)$.
Let $\tilde{\theta}$ be the maximum likelihood estimator.
Linearizing $\frac{\partial \log L(\tilde{\theta})}{\partial \theta}$ around $\tilde{\theta}=\theta$, we obtain:

$$
0=\frac{1}{\sqrt{n}} \frac{\partial \log L(\tilde{\theta})}{\partial \theta} \approx \frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta}+\frac{1}{\sqrt{n}} \frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta^{\prime}}(\tilde{\theta}-\theta),
$$

where the rest of terms (i.e., the second-order term, the third-order term, ...) are ig-
nored, which implies that the distribution of $\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta}$ is asymptotically equivalent to that of $\frac{1}{\sqrt{n}} \frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta^{\prime}}(\tilde{\theta}-\theta)$.
We have already known the distribution of $\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta}$ as follows:
$\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta} \approx-\frac{1}{\sqrt{n}} \frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta^{\prime}}(\tilde{\theta}-\theta)=\left(-\frac{1}{n} \frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta^{\prime}}\right) \sqrt{n}(\tilde{\theta}-\theta) \longrightarrow N(0, \Sigma)$.
Note as follows:

$$
-\frac{1}{n} \frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta^{\prime}} \longrightarrow \lim _{n \rightarrow \infty}\left(\frac{1}{n} \mathrm{E}\left(-\frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta^{\prime}}\right)\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{n} I(\theta)\right)=\Sigma
$$

Thus, $\left(-\frac{1}{n} \frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta^{\prime}}\right) \sqrt{n}(\tilde{\theta}-\theta)$ asymptotically has the same distribution as $\Sigma \sqrt{n}(\tilde{\theta}-$ $\theta)$.

Therefore,

$$
\mathrm{V}(\Sigma \sqrt{n}(\widehat{\theta}-\theta))=\Sigma \mathrm{V}(\sqrt{n}(\widehat{\theta}-\theta)) \Sigma^{\prime} \longrightarrow \Sigma
$$

Note that $\Sigma=\Sigma^{\prime}$. Thus, we have the asymptotic variance of $\sqrt{n}(\widehat{\theta}-\theta)$ as follows:

$$
\mathrm{V}(\sqrt{n}(\widehat{\theta}-\theta)) \longrightarrow \Sigma^{-1} \Sigma \Sigma^{-1}=\Sigma^{-1} .
$$

Finally, we obtain:

$$
\sqrt{n}(\widehat{\theta}-\theta) \longrightarrow N\left(0, \Sigma^{-1}\right)
$$

