11 Consistency and Asymptotic Normality of OLSE

Regression model: $\quad y=X \beta+u, \quad u \sim\left(0, \sigma^{2} I_{n}\right)$.

Consistency:

1. Let $\hat{\beta}_{n}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$ be the OLS with sample size n.

Consistency: As n is large, $\hat{\beta}_{n}$ converges to β.
2. Assume the stationarity condition for X, i.e.,

$$
\frac{1}{n} X^{\prime} X \longrightarrow M_{x x} .
$$

and no correlation between X and u, i.e.,

$$
\frac{1}{n} X^{\prime} u \longrightarrow 0
$$

3. Note that $\frac{1}{n} X^{\prime} X \longrightarrow M_{x x}$ results in $\left(\frac{1}{n} X^{\prime} X\right)^{-1} \longrightarrow M_{x x}^{-1}$.
\Longrightarrow Slutsky's Theorem
${ }^{(*)}$ Slutsky's Theorem $\quad g(\hat{\theta}) \longrightarrow g(\theta)$, when $\hat{\theta} \longrightarrow \theta$.
4. OLS is given by:

$$
\hat{\beta}_{n}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u=\beta+\left(\frac{1}{n} X^{\prime} X\right)^{-1}\left(\frac{1}{n} X^{\prime} u\right) .
$$

Therefore,

$$
\hat{\beta}_{n} \longrightarrow \beta+M_{x x}^{-1} \times 0=\beta
$$

Thus, OLSE is a consistent estimator.

Asymptotic Normality:

1. Asymptotic Normality of OLSE

$$
\sqrt{n}\left(\hat{\beta}_{n}-\beta\right) \longrightarrow N\left(0 . \sigma^{2} M_{x x}^{-1}\right), \quad \text { when } n \longrightarrow \infty .
$$

2. Central Limit Theorem: Greenberg and Webster (1983)
$Z_{1}, Z_{2}, \cdots, Z_{n}$ are mutually independent. Z_{i} is distributed with mean μ and variance Σ_{i} for $i=1,2, \cdots, n$.

Then, we have the following result:

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Z_{i}-\mu\right) \longrightarrow N(0, \Sigma)
$$

where

$$
\Sigma=\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{i=1}^{n} \Sigma_{i}\right) .
$$

Note that the distribution of Z_{i} is not assumed.
3. Define $Z_{i}=x_{i}^{\prime} u_{i}$. Then, $\Sigma_{i}=\mathrm{V}\left(Z_{i}\right)=\sigma^{2} x_{i}^{\prime} x_{i}$.
4. Σ is defined as:

$$
\Sigma=\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{i=1}^{n} \sigma^{2} x_{i}^{\prime} x_{i}\right)=\sigma^{2} \lim _{n \rightarrow \infty}\left(\frac{1}{n} X^{\prime} X\right)=\sigma^{2} M_{x x},
$$

where

$$
X=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

5. Applying Central Limit Theorem (Greenberg and Webster (1983), we obtain the following:

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_{i}^{\prime} u_{i}=\frac{1}{\sqrt{n}} X^{\prime} u \longrightarrow N\left(0, \sigma^{2} M_{x x}\right) .
$$

On the other hand，from $\hat{\beta}_{n}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u$ ，we can rewrite as：

$$
\begin{aligned}
& \sqrt{n}(\hat{\beta}-\beta)=\left(\frac{1}{n} X^{\prime} X\right)^{-1} \frac{1}{\sqrt{n}} X^{\prime} u . \\
& \mathrm{V}\left(\left(\frac{1}{n} X^{\prime} X\right)^{-1} \frac{1}{\sqrt{n}} X^{\prime} u\right)=\mathrm{E}\left(\left(\frac{1}{n} X^{\prime} X\right)^{-1} \frac{1}{\sqrt{n}} X^{\prime} u\left(\left(\frac{1}{n} X^{\prime} X\right)^{-1} \frac{1}{\sqrt{n}} X^{\prime} u\right)^{\prime}\right) \\
&=\left(\frac{1}{n} X^{\prime} X\right)^{-1}\left(\frac{1}{n} X^{\prime} \mathrm{E}\left(u u^{\prime}\right) X\right)\left(\frac{1}{n} X^{\prime} X\right)^{-1} \\
&=\sigma^{2}\left(\frac{1}{n} X^{\prime} X\right)^{-1}\left(\frac{1}{n} X^{\prime} X\right)\left(\frac{1}{n} X^{\prime} X\right)^{-1} \\
& \longrightarrow \sigma^{2} M_{x x}^{-1} M_{x x} M_{x x}^{-1}=\sigma^{2} M_{x x}^{-1} .
\end{aligned}
$$

Therefore，

$$
\sqrt{n}(\hat{\beta}-\beta) \longrightarrow N\left(0, \sigma^{2} M_{x x}^{-1}\right)
$$

\Longrightarrow Asymptotic normality（漸近的正規性）of OLSE
The distribution of u_{i} is not assumed．

12 Instrumental Variable（操作変数法）

12．1 Measurement Error（測定誤差）

Errors in Variables

1．True regression model：

$$
y=\tilde{X} \beta+u
$$

2．Observed variable：

$$
X=\tilde{X}+V
$$

V ：is called the measurement error（測定誤差 or 観測誤差）．

3．For the elements which do not include measurement errors in X ，the corre－ sponding elements in V are zeros．
4. Regression using observed variable:

$$
y=X \beta+(u-V \beta)
$$

OLS of β is:

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime}(u-V \beta)
$$

5. Assumptions:
(a) The measurement error in X is uncorrelated with \tilde{X} in the limit. i.e.,

$$
\operatorname{plim}\left(\frac{1}{n} \tilde{X}^{\prime} V\right)=0 .
$$

Therefore, we obtain the following:

$$
\operatorname{plim}\left(\frac{1}{n} X^{\prime} X\right)=\operatorname{plim}\left(\frac{1}{n} \tilde{X}^{\prime} \tilde{X}\right)+\operatorname{plim}\left(\frac{1}{n} V^{\prime} V\right)=\Sigma+\Omega
$$

(b) u is not correlated with V. u is not correlated with \tilde{X}.

That is,

$$
\operatorname{plim}\left(\frac{1}{n} V^{\prime} u\right)=0, \quad \operatorname{plim}\left(\frac{1}{n} \tilde{X}^{\prime} u\right)=0 .
$$

6. OLSE of β is:

$$
\hat{\beta}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime}(u-V \beta)=\beta+\left(X^{\prime} X\right)^{-1}(\tilde{X}+V)^{\prime}(u-V \beta) .
$$

Therefore, we obtain the following:

$$
\operatorname{plim} \hat{\beta}=\beta-(\Sigma+\Omega)^{-1} \Omega \beta
$$

7. Example: The Case of Two Variables:

The regression model is given by:

$$
y_{t}=\alpha+\beta \tilde{x}_{t}+u_{t}, \quad x_{t}=\tilde{x}_{t}+v_{t} .
$$

Under the above model,

$$
\Sigma=\operatorname{plim}\left(\frac{1}{n} \tilde{X}^{\prime} \tilde{X}\right)=\operatorname{plim}\left(\begin{array}{cc}
1 & \frac{1}{n} \sum \tilde{x}_{i} \\
\frac{1}{n} \sum \tilde{x}_{i} & \frac{1}{n} \sum \tilde{x}_{i}^{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & \mu \\
\mu & \mu^{2}+\sigma^{2}
\end{array}\right),
$$

where μ and σ^{2} represent the mean and variance of \tilde{x}_{i}.

$$
\Omega=\operatorname{plim}\left(\frac{1}{n} V^{\prime} V\right)=\operatorname{plim}\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{1}{n} \sum v_{i}^{2}
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & \sigma_{v}^{2}
\end{array}\right) .
$$

Therefore,

$$
\begin{aligned}
\operatorname{plim}\binom{\hat{\alpha}}{\hat{\beta}} & =\binom{\alpha}{\beta}-\left(\left(\begin{array}{cc}
1 & \mu \\
\mu & \mu^{2}+\sigma^{2}
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & \sigma_{v}^{2}
\end{array}\right)\right)^{-1}\left(\begin{array}{cc}
0 & 0 \\
0 & \sigma_{v}^{2}
\end{array}\right)\binom{\alpha}{\beta} \\
& =\binom{\alpha}{\beta}-\frac{1}{\sigma^{2}+\sigma_{v}^{2}}\binom{-\mu \sigma_{v}^{2} \beta}{\sigma_{v}^{2} \beta}
\end{aligned}
$$

Now we focus on β.
$\hat{\beta}$ is not consistent. because of:

$$
\operatorname{plim}(\hat{\beta})=\beta-\frac{\sigma_{v}^{2} \beta}{\sigma^{2}+\sigma_{v}^{2}}=\frac{\beta}{1+\sigma_{v}^{2} / \sigma^{2}}<\beta
$$

12．2 Instrumental Variable（IV）Method（操作変数法 or IV 法）

Instrumental Variable（IV）
1．Consider the regression model：$y=X \beta+u$ and $u \sim N\left(0, \sigma^{2} I_{n}\right)$ ．
In the case of $\mathrm{E}\left(X^{\prime} u\right) \neq 0$ ，OLSE of β is inconsistent．

2．Proof：

$$
\hat{\beta}=\beta+\left(\frac{1}{n} X^{\prime} X\right)^{-1} \frac{1}{n} X^{\prime} u \longrightarrow \beta+M_{x x}^{-1} M_{x u},
$$

where

$$
\frac{1}{n} X^{\prime} X \longrightarrow M_{x x}, \quad \frac{1}{n} X^{\prime} u \longrightarrow M_{x u} \neq 0
$$

3．Find the Z which satisfies $\frac{1}{n} Z^{\prime} u \longrightarrow M_{z u}=0$ ．

Multiplying Z^{\prime} on both sides of the regression model: $y=X \beta+u$,

$$
Z^{\prime} y=Z^{\prime} X \beta+Z^{\prime} u
$$

Dividing n on both sides of the above equation, we take plim on both sides.
Then, we obtain the following:

$$
\operatorname{plim}\left(\frac{1}{n} Z^{\prime} y\right)=\operatorname{plim}\left(\frac{1}{n} Z^{\prime} X\right) \beta+\operatorname{plim}\left(\frac{1}{n} Z^{\prime} u\right)=\operatorname{plim}\left(\frac{1}{n} Z^{\prime} X\right) \beta .
$$

Accordingly, we obtain:

$$
\beta=\left(\operatorname{plim}\left(\frac{1}{n} Z^{\prime} X\right)\right)^{-1} \operatorname{plim}\left(\frac{1}{n} Z^{\prime} y\right) .
$$

Therefore, we consider the following estimator:

$$
\beta_{I V}=\left(Z^{\prime} X\right)^{-1} Z^{\prime} y
$$

which is taken as an estimator of β ．
\Longrightarrow Instrumental Variable Method（操作変数法 or IV 法）
4．Assume the followings：

$$
\frac{1}{n} Z^{\prime} X \longrightarrow M_{z x}, \quad \frac{1}{n} Z^{\prime} Z \longrightarrow M_{z z}, \quad \frac{1}{n} Z^{\prime} u \longrightarrow 0
$$

5．Asymptotic Distribution of $\beta_{I V}$ ：

$$
\beta_{I V}=\left(Z^{\prime} X\right)^{-1} Z^{\prime} y=\left(Z^{\prime} X\right)^{-1} Z^{\prime}(X \beta+u)=\beta+\left(Z^{\prime} X\right)^{-1} Z^{\prime} u
$$

which is rewritten as：

$$
\sqrt{n}\left(\beta_{I V}-\beta\right)=\left(\frac{1}{n} Z^{\prime} X\right)^{-1}\left(\frac{1}{\sqrt{n}} Z^{\prime} u\right)
$$

Applying the Central Limit Theorem to $\left(\frac{1}{\sqrt{n}} Z^{\prime} u\right)$ ，we have the following result：

$$
\frac{1}{\sqrt{n}} Z^{\prime} u \longrightarrow N\left(0, \sigma^{2} M_{z z}\right) .
$$

Therefore,

$$
\sqrt{n}\left(\beta_{I V}-\beta\right)=\left(\frac{1}{n} Z^{\prime} X\right)^{-1}\left(\frac{1}{\sqrt{n}} Z^{\prime} u\right) \longrightarrow N\left(0, \sigma^{2} M_{z x}^{-1} M_{z z} M_{z x}^{\prime-1}\right)
$$

\Longrightarrow Consistency and Asymptotic Normality
6. The variance of $\beta_{I V}$ is given by:

$$
\mathrm{V}\left(\beta_{I V}\right)=s^{2}\left(Z^{\prime} X\right)^{-1} Z^{\prime} Z\left(X^{\prime} Z\right)^{-1}
$$

where

$$
s^{2}=\frac{\left(y-X \beta_{I V}\right)^{\prime}\left(y-X \beta_{I V}\right)}{n-k} .
$$

12．3 Two－Stage Least Squares Method（2 段階最小二乗法，2SLS or TSLS）

1．Regression Model：

$$
y=X \beta+u, \quad u \sim N\left(0, \sigma^{2} I\right),
$$

In the case of $\mathrm{E}\left(X^{\prime} u\right) \neq 0$ ，OLSE is not consistent．
2．Find the variable Z which satisfies $\frac{1}{n} Z^{\prime} u \longrightarrow M_{z u}=0$ ．
3．Use $Z=\hat{X}$ for the instrumental variable．
\hat{X} is the predicted value which regresses X on the other exogenous variables， say W ．

That is，consider the following regression model：

$$
X=W B+V
$$

Estimate B by OLS.

Then, we obtain the prediction:

$$
\hat{X}=W \hat{B},
$$

where $\hat{B}=\left(W^{\prime} W\right)^{-1} W^{\prime} X$.
Or, equivalently,

$$
\hat{X}=W\left(W^{\prime} W\right)^{-1} W^{\prime} X
$$

\hat{X} is used for the instrumental variable of X.
4. The IV method is rewritten as:

$$
\beta_{I V}=\left(\hat{X}^{\prime} X\right)^{-1} \hat{X}^{\prime} y=\left(X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} X\right)^{-1} X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} y .
$$

Furthermore, $\beta_{I V}$ is written as follows:

$$
\beta_{I V}=\beta+\left(X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} X\right)^{-1} X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} u .
$$

Therefore, we obtain the following expression:

$$
\begin{aligned}
\sqrt{n}\left(\beta_{I V}-\beta\right) & =\left(\left(\frac{1}{n} X^{\prime} W\right)\left(\frac{1}{n} W^{\prime} W\right)^{-1}\left(\frac{1}{n} X W^{\prime}\right)^{\prime}\right)^{-1}\left(\frac{1}{n} X^{\prime} W\right)\left(\frac{1}{n} W^{\prime} W\right)^{-1}\left(\frac{1}{\sqrt{n}} W^{\prime} u\right) \\
& \longrightarrow N\left(0, \sigma^{2}\left(M_{x w} M_{w w}^{-1} M_{x w}^{\prime}\right)^{-1}\right) .
\end{aligned}
$$

5. Clearly, there is no correlation between W and u at least in the limit, i.e.,

$$
\operatorname{plim}\left(\frac{1}{n} W^{\prime} u\right)=0 .
$$

6. Remark:

$$
\hat{X}^{\prime} X=X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} X=X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} X=\hat{X}^{\prime} \hat{X} .
$$

Therefore,

$$
\beta_{I V}=\left(\hat{X}^{\prime} X\right)^{-1} \hat{X}^{\prime} y=\left(\hat{X}^{\prime} \hat{X}\right)^{-1} \hat{X}^{\prime} y,
$$

which implies the OLS estimator of β in the regression model: $y=\hat{X} \beta+u$ and $u \sim N\left(0, \sigma^{2} I_{n}\right)$.

Example:

$$
y_{t}=\alpha x_{t}+\beta z_{t}+u_{t}, \quad u_{t} \sim\left(0, \sigma^{2}\right) .
$$

Suppose that x_{t} is correlated with u_{t} but z_{t} is not correlated with u_{t}.

- 1st Step:

Estimate the following regression model:

$$
x_{t}=\gamma w_{t}+\delta z_{t}+\cdots+v_{t},
$$

by OLS. \Longrightarrow Obtain \hat{x}_{t} through OLS.

- 2nd Step:

Estimate the following regression model:

$$
y_{t}=\alpha \hat{x}_{t}+\beta z_{t}+u_{t},
$$

by OLS. $\quad \Longrightarrow \alpha_{i v}$ and $\beta_{i v}$

Note as follows. Estimate the following regression model:

$$
z_{t}=\gamma_{2} w_{t}+\delta_{2} z_{t}+\cdots+v_{2 t},
$$

by OLS.
$\Longrightarrow \hat{\gamma}_{2}=0, \hat{\delta}_{2}=1$, and the other coefficient estimates are zeros. i.e., $\hat{z}_{t}=z_{t}$.

Eviews Command:

```
tsls y x z @ w z ...
```


13 Large Sample Tests

13．1 Wald，LM and LR Tests

Parameter $\theta: k \times 1, \quad h(\theta): G \times 1$ vector function，$G \leq k$
The null hypothesis $H_{0}: h(\theta)=0 \Longrightarrow G$ restrictions
$\tilde{\theta}: k \times 1$ ，restricted maximum likelihood estimate
$\hat{\theta}: k \times 1$ ，unrestricted maximum likelihood estimate
$I(\theta): k \times k$ ，information matrix，i．e．，$\quad I(\theta)=-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta^{\prime}}\right)$ ．
$\log L(\theta): \log$－likelihood function
$R_{\theta}=\frac{\partial h(\theta)}{\partial \theta^{\prime}}: G \times k, \quad F_{\theta}=\frac{\partial \log L(\theta)}{\partial \theta}: k \times 1$
1．Wald Test（ワルド 検定）：$\quad W=h(\hat{\theta})^{\prime}\left(R_{\hat{\theta}}(I(\hat{\theta}))^{-1} R_{\hat{\theta}}^{\prime}\right)^{-1} h(\hat{\theta})$
（a）$h(\hat{\theta}) \approx h(\theta)+\frac{\partial h(\theta)}{\partial \theta^{\prime}}(\hat{\theta}-\theta) \Longleftarrow h(\hat{\theta})$ is linearized around $\hat{\theta}=\theta$ ．

Under the null hypothesis $h(\theta)=0$,

$$
h(\hat{\theta}) \approx \frac{\partial h(\theta)}{\partial \theta^{\prime}}(\hat{\theta}-\theta)=R_{\theta}(\hat{\theta}-\theta)
$$

(b) $\hat{\theta}$ is MLE.

From the properties of MLE,

$$
\sqrt{n}(\hat{\theta}-\theta) \longrightarrow N\left(0, \lim _{n \rightarrow \infty}\left(\frac{I(\theta)}{n}\right)^{-1}\right)
$$

That is, approximately, we have the following result:

$$
\hat{\theta}-\theta \sim N\left(0,(I(\theta))^{-1}\right)
$$

(c) The distribution of $h(\hat{\theta})$ is approximately given by:

$$
h(\hat{\theta}) \sim N\left(0, R_{\theta}(I(\theta))^{-1} R_{\theta}^{\prime}\right)
$$

（d）Therefore，the $\chi^{2}(G)$ distribution is derived as follows：

$$
h(\hat{\theta})\left(R_{\theta}(I(\theta))^{-1} R_{\theta}^{\prime}\right)^{-1} h(\hat{\theta})^{\prime} \longrightarrow \chi^{2}(G) .
$$

Furthermore，from the fact that $R_{\hat{\theta}} \longrightarrow R_{\theta}$ and $I(\hat{\theta}) \longrightarrow I(\theta)$ as $n \longrightarrow \infty$ （i．e．，convergence in probability，確率収束），we can replace θ by $\hat{\theta}$ as follows：

$$
h(\hat{\theta})\left(R_{\hat{\theta}}(I(\hat{\theta}))^{-1} R_{\hat{\theta}}^{\prime}\right)^{-1} h(\hat{\theta})^{\prime} \longrightarrow \chi^{2}(G)
$$

2．Lagrange Multiplier Test（ラグランジェ 乗数検定）：$\quad L M=F_{\tilde{\theta}}^{\prime}(I(\tilde{\theta}))^{-1} F_{\tilde{\theta}}$
（a）MLE with the constraint $h(\theta)=0$ ：

$$
\max _{\theta} \log L(\theta), \quad \text { subject to } \quad h(\theta)=0
$$

The Lagrangian function is：$L=\log L(\theta)+\lambda h(\theta)$ ．
(b) For maximization, we have the following two equations:

$$
\frac{\partial L}{\partial \theta}=\frac{\partial \log L(\theta)}{\partial \theta}+\lambda \frac{\partial h(\theta)}{\partial \theta}=0, \quad \frac{\partial L}{\partial \lambda}=h(\theta)=0 .
$$

The restricted MLE $\tilde{\theta}$ satisfies $h(\tilde{\theta})=0$.
(c) Mean and variance of $\frac{\partial \log L(\theta)}{\partial \theta}$ are given by:

$$
\mathrm{E}\left(\frac{\partial \log L(\theta)}{\partial \theta}\right)=0, \quad \mathrm{~V}\left(\frac{\partial \log L(\theta)}{\partial \theta}\right)=-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta^{\prime}}\right)=I(\theta) .
$$

(d) Therefore, using the central limit theorem,

$$
\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta} \longrightarrow N\left(0, \lim _{n \rightarrow \infty}\left(\frac{1}{n} I(\theta)\right)\right)
$$

(e) Therefore, $\frac{\partial \log L(\theta)}{\partial \theta}(I(\theta))^{-1} \frac{\partial \log L(\theta)}{\partial \theta^{\prime}} \longrightarrow \chi^{2}(G)$.

Under $H_{0}: h(\theta)=0$, replacing θ by $\tilde{\theta}$ we have the result:

$$
F_{\tilde{\theta}}^{\prime}(I(\tilde{\theta}))^{-1} F_{\tilde{\theta}} \longrightarrow \chi^{2}(G) .
$$

3．Likelihood Ratio Test（尤度比検定）：$\quad L R=-2 \log \lambda \longrightarrow \chi^{2}(G)$

$$
\lambda=\frac{L(\tilde{\theta})}{L(\hat{\theta})}
$$

（a）By Taylor series expansion evaluated at $\theta=\hat{\theta}, \log L(\theta)$ is given by：

$$
\begin{aligned}
\log L(\theta) & =\log L(\hat{\theta})+\frac{\partial \log L(\hat{\theta})}{\partial \theta}(\theta-\hat{\theta})+\frac{1}{2}(\theta-\hat{\theta})^{\prime} \frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}(\theta-\hat{\theta})+\cdots \\
& =\log L(\hat{\theta})+\frac{1}{2}(\theta-\hat{\theta})^{\prime} \frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}(\theta-\hat{\theta})+\cdots
\end{aligned}
$$

Note that $\frac{\partial \log L(\hat{\theta})}{\partial \theta}=0$ because $\hat{\theta}$ is MLE．

$$
\begin{aligned}
-2(\log L(\theta)-\log L(\hat{\theta})) & \approx-(\theta-\hat{\theta})^{\prime}\left(\frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}\right)(\theta-\hat{\theta}) \\
& =\sqrt{n}(\hat{\theta}-\theta)^{\prime}\left(-\frac{1}{n} \frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}\right) \sqrt{n}(\hat{\theta}-\theta) \\
& \longrightarrow \chi^{2}(G)
\end{aligned}
$$

Note:
(1) $\hat{\theta} \longrightarrow \theta$,
(2) $-\frac{1}{n} \frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}} \longrightarrow-\lim _{n \rightarrow \infty}\left(\frac{1}{n} \mathrm{E}\left(\frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}\right)\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{n} I(\theta)\right)$,
(3) $\sqrt{n}(\hat{\theta}-\theta) \longrightarrow N\left(0, \lim _{n \rightarrow \infty}\left(\frac{1}{n} I(\theta)\right)\right)$.
(b) Under $H_{0}: h(\theta)=0$,

$$
-2(\log L(\tilde{\theta})-\log L(\hat{\theta})) \longrightarrow \chi^{2}(G) .
$$

Remember that $h(\tilde{\theta})=0$ is always satisfied.

For proof, see Theil (1971, p.396).
4. All of $W, L M$ and $L R$ are asymptotically distributed as $\chi^{2}(G)$ random variables under the null hypothesis $H_{0}: h(\theta)=0$.

5．Under some conditions，we have $W \geq L R \geq L M$ ．See Engle（1981）＂Wald， Likelihood and Lagrange Multiplier Tests in Econometrics，＂Chap． 13 in Hand－ book of Econometrics，Vol．2，Grilliches and Intriligator eds，North－Holland．

13．2 Example：W，LM and LR Tests

Date file \Longrightarrow cons99．txt（same data as before）
Each column denotes year，nominal household expenditures（家計消費， 10 billion yen），household disposable income（家計可処分所得， 10 billion yen）and household expenditure deflator（家計消費デフレータ，1990＝100）from the left．

1955	5430.1	6135.0	18.1	1970	37784.1	45913.2	35.2	1985	185335.1	220655.6	93.9
1956	5974.2	6828.4	18.3	1971	42571.6	51944.3	37.5	1986	193069.6	229938.8	94.8
1957	6686.3	7619.5	19.0	1972	49124.1	60245.4	39.7	1987	202072.8	235924.0	95.3
1958	7169.7	8153.3	19.1	1973	59366.1	74924.8	44.1	1988	212939.9	247159.7	95.8
1959	8019.3	9274.3	19.7	1974	71782.1	93833.2	53.3	1989	227122.2	263940.5	97.7
1960	9234.9	10776.5	20.5	1975	83591.1	108712.8	59.4	1990	243035.7	280133.0	100.0
1961	10836.2	12869.4	21.8	1976	94443.7	123540.9	65.2	1991	255531.8	297512.9	102.5
1962	12430.8	14701.4	23.2	1977	105397.8	135318.4	70.1	1992	265701.6	309256.6	104.5
1963	14506.6	17042.7	24.9	1978	115960.3	147244.2	73.5	1993	272075.3	317021.6	105.9
1964	16674.9	19709.9	26.0	1979	127600.9	157071.1	76.0	1994	279538.7	325655.7	106.7
1965	18820.5	22337.4	27.8	1980	138585.0	169931.5	81.6	1995	283245.4	331967.5	106.2
1966	21680.6	25514.5	29.0	1981	147103.4	181349.2	85.4	1996	291458.5	340619.1	106.0
1967	24914.0	29012.6	30.1	1982	157994.0	190611.5	87.7	1997	298475.2	345522.7	107.3
1968	28452.7	34233.6	31.6	1983	166631.6	199587.8	89.5				
1969	32705.2	39486.3	32.9	1984	175383.4	209451.9	91.8				

PROGRAM

```
LINE ************************************************
    1 freq a;
    2 smpl 1955 1997;
    3 read(file='cons99.txt') year cons yd price;
    4 rcons=cons/(price/100);
5 ryd=yd/(price/100);
6 lyd=log(ryd);
7 olsq rcons c ryd;
8 olsq @res @res(-1);
9 ar1 rcons c ryd;
10 olsq rcons c lyd;
11 param a1 0 a2 0 a3 1;
12 frml eq rcons=a1+a2*((ryd**a3)-1.)/a3;
13 lsq(tol=0.00001,maxit=100) eq;
14 a3=1.15;
15 rryd=((ryd**a3)-1.)/a3;
16 ar1 rcons c rryd;
17 end;
```

Equation 1
Method of estimation = Ordinary Least Squares
Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43
Mean of dep. var. $=146270$ LM het. test $=.207443$ [.649]
Std. dev. of dep. var. = 79317.2 Durbin-Watson = .115101 [.000,.000]
Sum of squared residuals $=.129697 \mathrm{E}+10$ Jarque-Bera test $=9.47539$ [.009]
Variance of residuals $=.316335 \mathrm{E}+08$ Ramsey's RESET2 $=53.6424$ [.000]
Std. error of regression $=5624.36 \quad$ F (zero slopes) $=8311.90$ [.000]
R-squared $=.995092 \quad$ Schwarz B.I.C. $=435.051$
Adjusted R-squared $=.994972 \quad$ Log likelihood $=-431.289$

	Estimated Coefficient	Standard Error	t-statistic	P-value
Variable	Coefin	(2919.54	1847.55	-1.58022
CYD	.852879	$.935486 \mathrm{E}-02$	91.1696	$[.000]$

Method of estimation = Ordinary Least Squares
Dependent variable: @RES
Current sample: 1956 to 1997
Number of observations: 42
Mean of dep. var. = -95.5174
Std. dev. of dep. var. = 5588.52
Sum of squared residuals $=.146231 \mathrm{E}+09$
Variance of residuals = .356662E+07
Std. error of regression $=1888.55$
R-squared $=.885884$
Adjusted R-squared $=.885884$
LM het. test = . 760256 [.383]
Durbin-Watson $=1.40409$ [.023,.023]
Durbin's h = 1.97732 [.048]
Durbin's h alt. $=1.91077$ [.056]
Jarque-Bera test $=6.49360$ [.039]
Ramsey's RESET2 = . 186107 [.668]
Schwarz B.I.C. = 377.788
Log likelihood = -375.919

	Estimated Variable	Standard Coefficient Error	t-statistic	P-value
@RES (-1)	.950693	.053301	17.8362	[.000]

Equation 3
FIRST-ORDER SERIAL CORRELATION OF THE ERROR
Objective function: Exact ML (keep first obs.)
Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43
Mean of dep. var. $=146270$.
Std. dev. of dep. var. = 79317.2
Sum of squared residuals $=.145826 \mathrm{E}+09$
Variance of residuals $=.364564 \mathrm{E}+07$
Std. error of regression $=1909.36$
Standard

Parameter	Estimate	Error	t-statistic	P-value
C	1672.42	6587.40	.253881	$[.800]$
RYD	.840011	.027182	30.9032	$[.000]$
RHO	.945025	.045843	20.6143	$[.000]$

Method of estimation = Ordinary Least Squares

```
Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43
```

 Mean of dep. var. \(=146270\).
 LM het. test \(=2.21031\) [.137]
 Std. dev. of dep. var. = 79317.2
 Durbin-Watson $=.029725$ [.000,.000]
Sum of squared residuals $=.256040 \mathrm{E}+11$ Jarque-Bera test $=3.72023$ [.156]
Variance of residuals $=.624487 \mathrm{E}+09$ Ramsey's RESET2 $=344.855$ [.000]
Std. error of regression $=24989.7$
R-squared $=.903100$
F (zero slopes) $=382.117$ [.000]
Schwarz B.I.C. = 499.179
Adjusted R-squared $=.900737$
Log likelihood = -495.418

	Estimated Coefficient	Standard Error	t-statistic	P-value
Variable	C	$-.115228 \mathrm{E}+07$	66538.5	-17.3175
C	109305.	5591.69	19.5478	$[.000]$
LYD	$1000]$			

NONLINEAR LEAST SQUARES

CONVERGENCE ACHIEVED AFTER 84 ITERATIONS

Number of	bservati warz B.I.	$\begin{aligned} & 43 \\ & 420.004 \end{aligned}$	Log likelihood =	414.362
		Standard		
Parameter	Estimate	Error	t-statistic	P-value
A1	16544.5	2615.60	6.32530	[.000]
A2	. 063304	. 024133	2.62307	[.009]
A3	1.21694	. 031705	38.3839	[.000]

Standard Errors computed from quadratic form of analytic first derivatives (Gauss)

Equation: EQ
Dependent variable: RCONS
Mean of dep. var. $=146270$.
Std. dev. of dep. var. = 79317.2
Sum of squared residuals $=.590213 \mathrm{E}+09$
Variance of residuals $=.147553 \mathrm{E}+08$
Std. error of regression $=3841.27$
R-squared $=.997766$
Adjusted R-squared $=.997655$
LM het. test $=.174943$ [.676]
Durbin-Watson $=.253234$ [.000, .000$]$

Equation 5
FIRST-ORDER SERIAL CORRELATION OF THE ERROR
Objective function: Exact ML (keep first obs.)
Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43
Mean of dep. var. = 146270.
Std. dev. of dep. var. = 79317.2
Sum of squared residuals $=.140391 \mathrm{E}+09$
Variance of residuals $=.350977 \mathrm{E}+07$
Std. error of regression $=1873.44$
Standard

Parameter	Estimate	Error	t-statistic	P-value
C	12034.8	3346.47	3.59628	$[.000]$
RRYD	.140723	$.282614 \mathrm{E}-02$	49.7933	$[.000]$
RHO	.876924	.068199	12.8583	$[.000]$

1. Equation 1 vs. Equation 3 (Test of Serial Correlation)

Equation 1 is:

$$
\mathrm{RCONS}_{t}=\beta_{1}+\beta_{2} \mathrm{RYD}_{t}+u_{t}, \quad \epsilon_{t} \sim \operatorname{iid} N\left(0, \sigma_{\epsilon}^{2}\right)
$$

Equation 3 is:

$$
\operatorname{RCONS}_{t}=\beta_{1}+\beta_{2} \operatorname{RYD}_{t}+u_{t}, \quad u_{t}=\rho u_{t-1}+\epsilon_{t}, \quad \epsilon_{t} \sim \operatorname{iid} N\left(0, \sigma_{\epsilon}^{2}\right)
$$

The null hypothesis is $H_{0}: \rho=0$

Restricted MLE \Longrightarrow Equation 1

Unrestricted MLE \Longrightarrow Equation 3
The log-likelihood function of Equation 3 is:

$$
\begin{aligned}
\log L\left(\beta, \sigma_{\epsilon}^{2}, \rho\right)= & -\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma_{\epsilon}^{2}\right)+\frac{1}{2} \log \left(1-\rho^{2}\right) \\
& -\frac{1}{2 \sigma_{\epsilon}^{2}} \sum_{t=1}^{n}\left(\mathrm{RCONS}_{t}^{*}-\beta_{1} \mathrm{CONST}_{t}^{*}-\beta_{2} \mathrm{RYD}_{t}^{*}\right)^{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& \operatorname{RCONS}_{t}^{*}= \begin{cases}\sqrt{1-\rho^{2}} \operatorname{RCONS}_{t}, & \text { for } t=1, \\
\operatorname{RCONS}_{t}-\rho \mathrm{RCONS}_{t-1}, & \text { for } t=2,3, \cdots, n,\end{cases} \\
& \operatorname{CONST}_{t}^{*}= \begin{cases}\sqrt{1-\rho^{2}}, & \text { for } t=1, \\
1-\rho, & \text { for } t=2,3, \cdots, n,\end{cases}
\end{aligned}
$$

$$
\operatorname{RYD}_{t}^{*}= \begin{cases}\sqrt{1-\rho^{2}} \operatorname{RYD}_{t}, & \text { for } t=1, \\ \operatorname{RYD}_{t}-\rho \operatorname{RYD}_{t-1}, & \text { for } t=2,3, \cdots, n\end{cases}
$$

- MLE with the restriction $\rho=0$ (Equation 1) solves:

$$
\max _{\beta, \sigma_{\epsilon}^{2}} \log L\left(\beta, \sigma_{\epsilon}^{2}, 0\right)
$$

Restricted MLE $\Longrightarrow \tilde{\beta}, \tilde{\sigma}_{\epsilon}^{2}$
Log of likelihood function $=-431.289$

- MLE without the restriction $\rho=0$ (Equation 3) solves:

$$
\max _{\beta, \sigma_{\epsilon}^{2}, \rho} \log L\left(\beta, \sigma_{\epsilon}^{2}, \rho\right)
$$

Unrestricted MLE $\Longrightarrow \hat{\beta}, \hat{\sigma}_{\epsilon}^{2}, \hat{\rho}$
Log of likelihood function $=-385.419$

The likelihood ratio test statistic is:

$$
\begin{aligned}
-2 \log (\lambda) & =-2 \log \left(\frac{L\left(\tilde{\beta}, \tilde{\sigma}_{\epsilon}^{2}, 0\right)}{L\left(\hat{\beta}, \hat{\sigma}_{\epsilon}^{2}, \hat{\rho}\right)}\right)=-2\left(\log L\left(\tilde{\beta}, \tilde{\sigma}_{\epsilon}^{2}, 0\right)-\log L\left(\hat{\beta}, \hat{\sigma}_{\epsilon}^{2}, \hat{\rho}\right)\right) \\
& =-2(-431.289-(-385.419))=91.74
\end{aligned}
$$

The asymptotic distribution is given by:

$$
-2 \log (\lambda) \sim \chi^{2}(G)
$$

where G is the number of the restrictions, i.e., $G=1$ in this case.
The 1% upper probability point of $\chi^{2}(1)$ is 6.635 .

$$
91.74>6.635
$$

Therefore, $H_{0}: \rho=0$ is rejected.
There is serial correlation in the error term.
2. Equation 1 (Test of Serial Correlation \longrightarrow Lagrange Multiplier Test)

Equation 2 is:

$$
@ \mathrm{RES}_{t}=\rho @ \mathrm{RES}_{t-1}+\epsilon_{t}, \quad \epsilon_{t} \sim N\left(0, \sigma_{\epsilon}^{2}\right),
$$

where $@ \mathrm{RES}_{t}=\mathrm{RCONS}_{t}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{RYD}_{t}$, and $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are OLSEs.
The null hypothesis is $H_{0}: \rho=0$
@RES(-1) . 950693 . 053301 [.000]

Therefore, the Lagrange multiplier test statistic is $17.8362^{2}=318.13>6.635$.
$H_{0}: \rho=0$ is rejected.
3. Equation 3 (Test of Serial Correlation \longrightarrow Wald Test)

Equation 3 is:

$$
\operatorname{RCONS}_{t}=\beta_{1}+\beta_{2} \operatorname{RYD}_{t}+u_{t}, \quad u_{t}=\rho u_{t-1}+\epsilon_{t}, \quad \epsilon_{t} \sim \operatorname{iid} N\left(0, \sigma_{\epsilon}^{2}\right)
$$

The null hypothesis is $H_{0}: \rho=0$
RHO . 945025 . 045843 20.6143 [.000]

The Wald test statistics is $20.6143^{2}=424.95$, which is compared with $\chi^{2}(1)$.
4. Equation 1 vs. NONLINEAR LEAST SQUARES (Choice of Functional Form linear):

NONLINEAR LEAST SQUARES estimates:

$$
\operatorname{RCONS}_{t}=a 1+a 2 \frac{\operatorname{RYD}_{t}^{a 3}-1}{a 3}+u_{t} .
$$

When $a 3=1$, we have:

$$
\operatorname{RCONS}_{t}=(a 1-a 2)+a 2 \mathrm{RYD}_{t}+u_{t},
$$

which is equivalent to Equation 1.
The null hypothesis is $H_{0}: a 3=1$, where $G=1$.

- MLE with $a 3=1$ MLE (Equation 1)

Log of likelihood function $=-431.289$

- MLE without $a 3=1$ (NONLINEAR LEAST SQUARES)

Log of likelihood function $=-414.362$

The likelihood ratio test statistic is given by:

$$
-2 \log (\lambda)=-2(-431.289-(-414.362))=33.854
$$

The 1% upper probability point of $\chi^{2}(1)$ is 6.635 .

$$
33.854>6.635
$$

$H_{0}: a 3=1$ is rejected by the likelihood ratio test.
Therefore, the functional form of the regression model is not linear.
5. Equation 4 vs. NONLINEAR LEAST SQUARES (Choice of Functional Form -log-linear):

In NONLINEAR LEAST SQUARES, i.e.,

$$
\operatorname{RCONS}_{t}=a 1+a 2 \frac{\operatorname{RYD}_{t}^{a 3}-1}{a 3}+u_{t},
$$

if $a 3=0$, we have:

$$
\mathrm{RCONS}_{t}=a 1+a 2 \log \left(\mathrm{RYD}_{t}\right)+u_{t},
$$

which is equivalent to Equation 3.
The null hypothesis is $H_{0}: a 3=0$, where $G=1$.

- MLE with $a 3=0$ (Equation 3)

Log of likelihood function $=-495.418$

- MLE without $a 3=0$ (NONLINEAR LEAST SQUARES)

Log of likelihood function $=-414.362$

The likelihood ratio test statistic is:

$$
-2 \log (\lambda)=-2(-495.418-(-414.362))=162.112>6.635
$$

Therefore, $H_{0}: a 3=0$ is rejected.
As a result, the functional form of the regression model is not log-linear, either.
6. Equation 1 vs. Equation 5 (Simultaneous Test of Serial Correlation and Linear Function):

Equation 5 is:

$$
\operatorname{RCONS}_{t}=a 1+a 2 \frac{\operatorname{RYD}_{t}^{a 3}-1}{a 3}+u_{t}, \quad u_{t}=\rho u_{t-1}+\epsilon_{t}, \quad \epsilon_{t} \sim \operatorname{iid} N\left(0, \sigma_{\epsilon}^{2}\right)
$$

The null hypothesis is $H_{0}: a 3=1, \rho=0$
Restricted MLE \Longrightarrow Equation 1
Unrestricted MLE \Longrightarrow Equation 4

Remark: In Lines 14-16 of PROGRAM, we have estimated Equation 4, given $a 3=0.00,0.01,0.02, \cdots$.

As a result, $a 3=1.15$ gives us the maximum log-likelihood.

The likelihood ratio test statistic is:

$$
-2 \log (\lambda)=-2(-431.289-(-383.807))=94.964
$$

$-2 \log (\lambda) \sim \chi^{2}(2)$ in this case.
The 1% upper probability point of $\chi^{2}(2)$ is 9.210 .

$$
94.964>9.210
$$

$H_{0}: a 3=1, \rho=0$ is rejected.

Equation 3 vs. Equation 5 vs. (Taking into account serially correlated errors, Choice of Functional Form - linear):

The null hypothesis is H_{0} : a3 = 1
From Equation 3,

Log likelihood = -385.419

From Equation 5,

Log likelihood = -383.807

$$
2(-383.807-(-385.419))=3.224<6.635 .
$$

$H_{0}: a 3=1$ is not rejected, given $\rho \neq 0$.
Thus, if serial correlation is taken into account, the regression model is linear.

