
11 Consistency and Asymptotic Normality of OLSE

Regression model: y = Xβ + u, u ∼ (0, σ2In).

Consistency:

1. Let β̂n = (X′X)−1X′y be the OLS with sample size n.

Consistency: As n is large, β̂n converges to β.

2. Assume the stationarity condition for X, i.e.,

1
n

X′X −→ Mxx.

and no correlation between X and u, i.e.,

1
n

X′u −→ 0.
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3. Note that
1
n

X′X −→ Mxx results in (
1
n

X′X)−1 −→ M−1
xx .

=⇒ Slutsky’s Theorem

(*) Slutsky’s Theorem g(θ̂) −→ g(θ), when θ̂ −→ θ.

4. OLS is given by:

β̂n = β + (X′X)−1X′u = β + (
1
n

X′X)−1(
1
n

X′u).

Therefore,

β̂n −→ β + M−1
xx × 0 = β

Thus, OLSE is a consistent estimator.
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Asymptotic Normality:

1. Asymptotic Normality of OLSE
√

n(β̂n − β) −→ N(0.σ2M−1
xx ), when n −→ ∞.

2. Central Limit Theorem: Greenberg and Webster (1983)

Z1, Z2, · · ·, Zn are mutually independent. Zi is distributed with mean µ and

variance Σi for i = 1, 2, · · · , n.

Then, we have the following result:

1√
n

n∑

i=1

(Zi − µ) −→ N(0,Σ),

where

Σ = lim
n→∞


1
n

n∑

i=1

Σi

 .

Note that the distribution of Zi is not assumed.
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3. Define Zi = x′iui. Then, Σi = V(Zi) = σ2x′i xi.

4. Σ is defined as:

Σ = lim
n→∞


1
n

n∑

i=1

σ2x′i xi

 = σ2 lim
n→∞

(
1
n

X′X
)

= σ2Mxx,

where

X =



x1

x2
...

xn



5. Applying Central Limit Theorem (Greenberg and Webster (1983), we obtain

the following:

1√
n

n∑

i=1

x′iui =
1√
n

X′u −→ N(0, σ2Mxx).
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On the other hand, from β̂n = β + (X′X)−1X′u, we can rewrite as:

√
n(β̂ − β) =

(1
n

X′X
)−1 1√

n
X′u.

V
((1

n
X′X

)−1 1√
n

X′u
)

= E
((1

n
X′X

)−1 1√
n

X′u
((1

n
X′X

)−1 1√
n

X′u
)′)

=
(1
n

X′X
)−1(1

n
X′E(uu′)X

)(1
n

X′X
)−1

= σ2
(1
n

X′X
)−1(1

n
X′X

)(1
n

X′X
)−1

−→ σ2M−1
xx MxxM−1

xx = σ2M−1
xx .

Therefore,
√

n(β̂ − β) −→ N(0, σ2M−1
xx )

=⇒ Asymptotic normality (漸近的正規性) of OLSE

The distribution of ui is not assumed.
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12 Instrumental Variable (操作変数法)

12.1 Measurement Error (測定誤差)

Errors in Variables

1. True regression model:

y = X̃β + u

2. Observed variable:

X = X̃ + V

V: is called the measurement error (測定誤差 or観測誤差).

3. For the elements which do not include measurement errors in X, the corre-

sponding elements in V are zeros.
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4. Regression using observed variable:

y = Xβ + (u − Vβ)

OLS of β is:

β̂ = (X′X)−1X′y = β + (X′X)−1X′(u − Vβ)

5. Assumptions:

(a) The measurement error in X is uncorrelated with X̃ in the limit. i.e.,

plim
(1
n

X̃′V
)

= 0.

Therefore, we obtain the following:

plim
(1
n

X′X
)

= plim
(1
n

X̃′X̃
)

+ plim
(1
n

V ′V
)

= Σ + Ω
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(b) u is not correlated with V .

u is not correlated with X̃.

That is,

plim
(1
n

V ′u
)

= 0, plim
(1
n

X̃′u
)

= 0.

6. OLSE of β is:

β̂ = β + (X′X)−1X′(u − Vβ) = β + (X′X)−1(X̃ + V)′(u − Vβ).

Therefore, we obtain the following:

plim β̂ = β − (Σ + Ω)−1Ωβ
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7. Example: The Case of Two Variables:

The regression model is given by:

yt = α + βx̃t + ut, xt = x̃t + vt.

Under the above model,

Σ = plim
(1
n

X̃′X̃
)

= plim


1

1
n

∑
x̃i

1
n

∑
x̃i

1
n

∑
x̃2

i

 =

( 1 µ

µ µ2 + σ2

)
,

where µ and σ2 represent the mean and variance of x̃i.

Ω = plim
(1
n

V ′V
)

= plim
( 0 0

0
1
n

∑
v2

i

)
=

( 0 0

0 σ2
v

)
.

Therefore,

plim
(
α̂

β̂

)
=

(
α

β

)
−

(( 1 µ

µ µ2 + σ2

)
+

( 0 0

0 σ2
v

))−1 ( 0 0

0 σ2
v

) (
α

β

)

=

(
α

β

)
− 1
σ2 + σ2

v

(−µσ2
vβ

σ2
vβ

)
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Now we focus on β.

β̂ is not consistent. because of:

plim(β̂) = β − σ2
vβ

σ2 + σ2
v

=
β

1 + σ2
v/σ

2 < β
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12.2 Instrumental Variable (IV) Method (操作変数法 or IV法)

Instrumental Variable (IV)

1. Consider the regression model: y = Xβ + u and u ∼ N(0, σ2In).

In the case of E(X′u) , 0, OLSE of β is inconsistent.

2. Proof:

β̂ = β + (
1
n

X′X)−1 1
n

X′u −→ β + M−1
xx Mxu,

where

1
n

X′X −→ Mxx,
1
n

X′u −→ Mxu , 0

3. Find the Z which satisfies
1
n

Z′u −→ Mzu = 0.
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Multiplying Z′ on both sides of the regression model: y = Xβ + u,

Z′y = Z′Xβ + Z′u

Dividing n on both sides of the above equation, we take plim on both sides.

Then, we obtain the following:

plim
(
1
n

Z′y
)

= plim
(
1
n

Z′X
)
β + plim

(
1
n

Z′u
)

= plim
(
1
n

Z′X
)
β.

Accordingly, we obtain:

β =

(
plim

(
1
n

Z′X
))−1

plim
(
1
n

Z′y
)
.

Therefore, we consider the following estimator:

βIV = (Z′X)−1Z′y,
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which is taken as an estimator of β.

=⇒ Instrumental Variable Method (操作変数法 or IV法)

4. Assume the followings:

1
n

Z′X −→ Mzx,
1
n

Z′Z −→ Mzz,
1
n

Z′u −→ 0

5. Asymptotic Distribution of βIV:

βIV = (Z′X)−1Z′y = (Z′X)−1Z′(Xβ + u) = β + (Z′X)−1Z′u,

which is rewritten as:

√
n(βIV − β) =

(1
n

Z′X
)−1( 1√

n
Z′u

)

Applying the Central Limit Theorem to
( 1√

n
Z′u

)
, we have the following result:

1√
n

Z′u −→ N(0, σ2Mzz).
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Therefore,

√
n(βIV − β) =

(1
n

Z′X
)−1( 1√

n
Z′u

)
−→ N(0, σ2M−1

zx MzzM′
zx
−1)

=⇒ Consistency and Asymptotic Normality

6. The variance of βIV is given by:

V(βIV) = s2(Z′X)−1Z′Z(X′Z)−1,

where

s2 =
(y − XβIV)′(y − XβIV)

n − k
.
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12.3 Two-Stage Least Squares Method (2段階最小二乗法, 2SLS

or TSLS)

1. Regression Model:

y = Xβ + u, u ∼ N(0, σ2I),

In the case of E(X′u) , 0, OLSE is not consistent.

2. Find the variable Z which satisfies
1
n

Z′u −→ Mzu = 0.

3. Use Z = X̂ for the instrumental variable.

X̂ is the predicted value which regresses X on the other exogenous variables,

say W.

That is, consider the following regression model:

X = WB + V.
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Estimate B by OLS.

Then, we obtain the prediction:

X̂ = WB̂,

where B̂ = (W ′W)−1W ′X.

Or, equivalently,

X̂ = W(W ′W)−1W ′X.

X̂ is used for the instrumental variable of X.

4. The IV method is rewritten as:

βIV = (X̂′X)−1X̂′y = (X′W(W ′W)−1W ′X)−1X′W(W ′W)−1W ′y.

Furthermore, βIV is written as follows:

βIV = β + (X′W(W ′W)−1W ′X)−1X′W(W ′W)−1W ′u.
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Therefore, we obtain the following expression:

√
n(βIV − β) =

((1
n

X′W
)(1

n
W ′W

)−1(1
n

XW ′)′
)−1 (1

n
X′W

)(1
n

W ′W
)−1( 1√

n
W ′u

)

−→ N
(
0, σ2(MxwM−1

wwM′
xw)−1

)
.

5. Clearly, there is no correlation between W and u at least in the limit, i.e.,

plim
(1
n

W ′u
)

= 0.

6. Remark:

X̂′X = X′W(W ′W)−1W ′X = X′W(W ′W)−1W ′W(W ′W)−1W ′X = X̂′X̂.

Therefore,

βIV = (X̂′X)−1X̂′y = (X̂′X̂)−1X̂′y,
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which implies the OLS estimator of β in the regression model: y = X̂β + u and

u ∼ N(0, σ2In).

Example:

yt = αxt + βzt + ut, ut ∼ (0, σ2).

Suppose that xt is correlated with ut but zt is not correlated with ut.

• 1st Step:

Estimate the following regression model:

xt = γwt + δzt + · · · + vt,

by OLS. =⇒ Obtain x̂t through OLS.
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• 2nd Step:

Estimate the following regression model:

yt = αx̂t + βzt + ut,

by OLS. =⇒ αiv and βiv

Note as follows. Estimate the following regression model:

zt = γ2wt + δ2zt + · · · + v2t,

by OLS.

=⇒ γ̂2 = 0, δ̂2 = 1, and the other coefficient estimates are zeros. i.e., ẑt = zt.

Eviews Command:

tsls y x z @ w z ...
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13 Large Sample Tests

13.1 Wald, LM and LR Tests

Parameter θ : k × 1, h(θ) : G × 1 vector function, G ≤ k

The null hypothesis H0 : h(θ) = 0 =⇒ G restrictions

θ̃ : k × 1, restricted maximum likelihood estimate

θ̂ : k × 1, unrestricted maximum likelihood estimate

I(θ) : k × k, information matrix, i.e., I(θ) = −E
(∂2 log L(θ)

∂θ∂θ′
)
.

log L(θ) : log-likelihood function

Rθ =
∂h(θ)
∂θ′

: G × k, Fθ =
∂ log L(θ)

∂θ
: k × 1

1. Wald Test (ワルド検定): W = h(θ̂)′
(
Rθ̂(I(θ̂))−1R′

θ̂

)−1
h(θ̂)

(a) h(θ̂) ≈ h(θ) +
∂h(θ)
∂θ′

(θ̂ − θ) ⇐= h(θ̂) is linearized around θ̂ = θ.
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Under the null hypothesis h(θ) = 0,

h(θ̂) ≈ ∂h(θ)
∂θ′

(θ̂ − θ) = Rθ(θ̂ − θ)

(b) θ̂ is MLE.

From the properties of MLE,

√
n(θ̂ − θ) −→ N

(
0, lim

n→∞

( I(θ)
n

)−1)
,

That is, approximately, we have the following result:

θ̂ − θ ∼ N
(
0, (I(θ))−1

)
.

(c) The distribution of h(θ̂) is approximately given by:

h(θ̂) ∼ N
(
0,Rθ(I(θ))−1R′θ

)
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(d) Therefore, the χ2(G) distribution is derived as follows:

h(θ̂)
(
Rθ(I(θ))−1R′θ

)−1
h(θ̂)′ −→ χ2(G).

Furthermore, from the fact that Rθ̂ −→ Rθ and I(θ̂) −→ I(θ) as n −→ ∞
(i.e., convergence in probability, 確率収束), we can replace θ by θ̂ as

follows:

h(θ̂)
(
Rθ̂(I(θ̂))−1R′

θ̂

)−1
h(θ̂)′ −→ χ2(G).

2. Lagrange Multiplier Test (ラグランジェ乗数検定): LM = F′
θ̃
(I(θ̃))−1Fθ̃

(a) MLE with the constraint h(θ) = 0:

max
θ

log L(θ), subject to h(θ) = 0

The Lagrangian function is: L = log L(θ) + λh(θ).
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(b) For maximization, we have the following two equations:

∂L
∂θ

=
∂ log L(θ)

∂θ
+ λ

∂h(θ)
∂θ

= 0,
∂L
∂λ

= h(θ) = 0.

The restricted MLE θ̃ satisfies h(θ̃) = 0.

(c) Mean and variance of
∂ log L(θ)

∂θ
are given by:

E
(∂ log L(θ)

∂θ

)
= 0, V

(∂ log L(θ)
∂θ

)
= −E

(∂2 log L(θ)
∂θ∂θ′

)
= I(θ).

(d) Therefore, using the central limit theorem,

1√
n
∂ log L(θ)

∂θ
=

1√
n

n∑

i=1

∂ log f (Xi; θ)
∂θ

−→ N
(
0, lim

n→∞

(1
n

I(θ)
))

(e) Therefore,
∂ log L(θ)

∂θ
(I(θ))−1∂ log L(θ)

∂θ′
−→ χ2(G).

Under H0 : h(θ) = 0, replacing θ by θ̃ we have the result:

F′
θ̃
(I(θ̃))−1Fθ̃ −→ χ2(G).
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3. Likelihood Ratio Test (尤度比検定): LR = −2 log λ −→ χ2(G)

λ =
L(θ̃)
L(θ̂)

(a) By Taylor series expansion evaluated at θ = θ̂, log L(θ) is given by:

log L(θ) = log L(θ̂) +
∂ log L(θ̂)

∂θ
(θ − θ̂) +

1
2

(θ − θ̂)′∂
2 log L(θ̂)
∂θ∂θ′

(θ − θ̂) + · · ·

= log L(θ̂) +
1
2

(θ − θ̂)′∂
2 log L(θ̂)
∂θ∂θ′

(θ − θ̂) + · · ·

Note that
∂ log L(θ̂)

∂θ
= 0 because θ̂ is MLE.

−2(log L(θ) − log L(θ̂)) ≈ −(θ − θ̂)′
(∂2 log L(θ̂)

∂θ∂θ′
)
(θ − θ̂)

=
√

n(θ̂ − θ)′
(
−1

n
∂2 log L(θ̂)
∂θ∂θ′

)√
n(θ̂ − θ)

−→ χ2(G)
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Note:

(1) θ̂ −→ θ,

(2) −1
n
∂2 log L(θ̂)
∂θ∂θ′

−→ − lim
n→∞

(1
n

E
(∂2 log L(θ̂)

∂θ∂θ′
))

= lim
n→∞

(1
n

I(θ)
)
,

(3)
√

n(θ̂ − θ) −→ N
(
0, lim

n→∞

(1
n

I(θ)
))

.

(b) Under H0 : h(θ) = 0,

−2(log L(θ̃) − log L(θ̂)) −→ χ2(G).

Remember that h(θ̃) = 0 is always satisfied.

For proof, see Theil (1971, p.396).

4. All of W, LM and LR are asymptotically distributed as χ2(G) random variables

under the null hypothesis H0 : h(θ) = 0 .
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5. Under some conditions, we have W ≥ LR ≥ LM. See Engle (1981) “Wald,

Likelihood and Lagrange Multiplier Tests in Econometrics,” Chap. 13 in Hand-

book of Econometrics, Vol.2, Grilliches and Intriligator eds, North-Holland.

13.2 Example: W, LM and LR Tests

Date file =⇒ cons99.txt (same data as before)

Each column denotes year, nominal household expenditures (家計消費，10 billion

yen), household disposable income (家計可処分所得，10 billion yen) and household

expenditure deflator (家計消費デフレータ，1990=100) from the left.
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1955 5430.1 6135.0 18.1 1970 37784.1 45913.2 35.2 1985 185335.1 220655.6 93.9

1956 5974.2 6828.4 18.3 1971 42571.6 51944.3 37.5 1986 193069.6 229938.8 94.8

1957 6686.3 7619.5 19.0 1972 49124.1 60245.4 39.7 1987 202072.8 235924.0 95.3

1958 7169.7 8153.3 19.1 1973 59366.1 74924.8 44.1 1988 212939.9 247159.7 95.8

1959 8019.3 9274.3 19.7 1974 71782.1 93833.2 53.3 1989 227122.2 263940.5 97.7

1960 9234.9 10776.5 20.5 1975 83591.1 108712.8 59.4 1990 243035.7 280133.0 100.0

1961 10836.2 12869.4 21.8 1976 94443.7 123540.9 65.2 1991 255531.8 297512.9 102.5

1962 12430.8 14701.4 23.2 1977 105397.8 135318.4 70.1 1992 265701.6 309256.6 104.5

1963 14506.6 17042.7 24.9 1978 115960.3 147244.2 73.5 1993 272075.3 317021.6 105.9

1964 16674.9 19709.9 26.0 1979 127600.9 157071.1 76.0 1994 279538.7 325655.7 106.7

1965 18820.5 22337.4 27.8 1980 138585.0 169931.5 81.6 1995 283245.4 331967.5 106.2

1966 21680.6 25514.5 29.0 1981 147103.4 181349.2 85.4 1996 291458.5 340619.1 106.0

1967 24914.0 29012.6 30.1 1982 157994.0 190611.5 87.7 1997 298475.2 345522.7 107.3

1968 28452.7 34233.6 31.6 1983 166631.6 199587.8 89.5

1969 32705.2 39486.3 32.9 1984 175383.4 209451.9 91.8
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PROGRAM
LINE ***********************************************
| 1 freq a;
| 2 smpl 1955 1997;
| 3 read(file=’cons99.txt’) year cons yd price;
| 4 rcons=cons/(price/100);
| 5 ryd=yd/(price/100);
| 6 lyd=log(ryd);
| 7 olsq rcons c ryd;
| 8 olsq @res @res(-1);
| 9 ar1 rcons c ryd;
| 10 olsq rcons c lyd;
| 11 param a1 0 a2 0 a3 1;
| 12 frml eq rcons=a1+a2*((ryd**a3)-1.)/a3;
| 13 lsq(tol=0.00001,maxit=100) eq;
| 14 a3=1.15;
| 15 rryd=((ryd**a3)-1.)/a3;
| 16 ar1 rcons c rryd;
| 17 end;
*****************************************************
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Equation 1
============

Method of estimation = Ordinary Least Squares

Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43

Mean of dep. var. = 146270. LM het. test = .207443 [.649]
Std. dev. of dep. var. = 79317.2 Durbin-Watson = .115101 [.000,.000]

Sum of squared residuals = .129697E+10 Jarque-Bera test = 9.47539 [.009]
Variance of residuals = .316335E+08 Ramsey’s RESET2 = 53.6424 [.000]

Std. error of regression = 5624.36 F (zero slopes) = 8311.90 [.000]
R-squared = .995092 Schwarz B.I.C. = 435.051

Adjusted R-squared = .994972 Log likelihood = -431.289

Estimated Standard
Variable Coefficient Error t-statistic P-value
C -2919.54 1847.55 -1.58022 [.122]
RYD .852879 .935486E-02 91.1696 [.000]
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Equation 2
============

Method of estimation = Ordinary Least Squares

Dependent variable: @RES
Current sample: 1956 to 1997
Number of observations: 42

Mean of dep. var. = -95.5174
Std. dev. of dep. var. = 5588.52

Sum of squared residuals = .146231E+09
Variance of residuals = .356662E+07

Std. error of regression = 1888.55
R-squared = .885884

Adjusted R-squared = .885884
LM het. test = .760256 [.383]

Durbin-Watson = 1.40409 [.023,.023]
Durbin’s h = 1.97732 [.048]

Durbin’s h alt. = 1.91077 [.056]
Jarque-Bera test = 6.49360 [.039]
Ramsey’s RESET2 = .186107 [.668]
Schwarz B.I.C. = 377.788
Log likelihood = -375.919

Estimated Standard
Variable Coefficient Error t-statistic P-value
@RES(-1) .950693 .053301 17.8362 [.000]
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Equation 3
============

FIRST-ORDER SERIAL CORRELATION OF THE ERROR
Objective function: Exact ML (keep first obs.)

Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43

Mean of dep. var. = 146270. R-squared = .999480
Std. dev. of dep. var. = 79317.2 Adjusted R-squared = .999454

Sum of squared residuals = .145826E+09 Durbin-Watson = 1.38714
Variance of residuals = .364564E+07 Schwarz B.I.C. = 391.061

Std. error of regression = 1909.36 Log likelihood = -385.419

Standard
Parameter Estimate Error t-statistic P-value
C 1672.42 6587.40 .253881 [.800]
RYD .840011 .027182 30.9032 [.000]
RHO .945025 .045843 20.6143 [.000]
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Equation 4
============

Method of estimation = Ordinary Least Squares

Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43

Mean of dep. var. = 146270. LM het. test = 2.21031 [.137]
Std. dev. of dep. var. = 79317.2 Durbin-Watson = .029725 [.000,.000]

Sum of squared residuals = .256040E+11 Jarque-Bera test = 3.72023 [.156]
Variance of residuals = .624487E+09 Ramsey’s RESET2 = 344.855 [.000]

Std. error of regression = 24989.7 F (zero slopes) = 382.117 [.000]
R-squared = .903100 Schwarz B.I.C. = 499.179

Adjusted R-squared = .900737 Log likelihood = -495.418

Estimated Standard
Variable Coefficient Error t-statistic P-value
C -.115228E+07 66538.5 -17.3175 [.000]
LYD 109305. 5591.69 19.5478 [.000]
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NONLINEAR LEAST SQUARES
=======================

CONVERGENCE ACHIEVED AFTER 84 ITERATIONS

Number of observations = 43 Log likelihood = -414.362
Schwarz B.I.C. = 420.004

Standard
Parameter Estimate Error t-statistic P-value
A1 16544.5 2615.60 6.32530 [.000]
A2 .063304 .024133 2.62307 [.009]
A3 1.21694 .031705 38.3839 [.000]

Standard Errors computed from quadratic form of analytic first derivatives
(Gauss)

Equation: EQ
Dependent variable: RCONS

Mean of dep. var. = 146270.
Std. dev. of dep. var. = 79317.2

Sum of squared residuals = .590213E+09
Variance of residuals = .147553E+08

Std. error of regression = 3841.27
R-squared = .997766

Adjusted R-squared = .997655
LM het. test = .174943 [.676]

Durbin-Watson = .253234 [.000,.000]
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Equation 5
============

FIRST-ORDER SERIAL CORRELATION OF THE ERROR
Objective function: Exact ML (keep first obs.)

Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43

Mean of dep. var. = 146270. R-squared = .999470
Std. dev. of dep. var. = 79317.2 Adjusted R-squared = .999443

Sum of squared residuals = .140391E+09 Durbin-Watson = 1.43657
Variance of residuals = .350977E+07 Schwarz B.I.C. = 389.449

Std. error of regression = 1873.44 Log likelihood = -383.807

Standard
Parameter Estimate Error t-statistic P-value
C 12034.8 3346.47 3.59628 [.000]
RRYD .140723 .282614E-02 49.7933 [.000]
RHO .876924 .068199 12.8583 [.000]
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1. Equation 1 vs. Equation 3 (Test of Serial Correlation)

Equation 1 is:

RCONSt = β1 + β2RYDt + ut, εt ∼ iid N(0, σ2
ε )

Equation 3 is:

RCONSt = β1 + β2RYDt + ut, ut = ρut−1 + εt, εt ∼ iid N(0, σ2
ε )

The null hypothesis is H0 : ρ = 0
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Restricted MLE =⇒ Equation 1

Unrestricted MLE =⇒ Equation 3

The log-likelihood function of Equation 3 is:

log L(β, σ2
ε , ρ) = −n

2
log(2π) − n

2
log(σ2

ε ) +
1
2

log(1 − ρ2)

− 1
2σ2

ε

n∑

t=1

(RCONS∗t − β1CONST
∗
t − β2RYD

∗
t )2,

where

RCONS∗t =



√
1 − ρ2RCONSt, for t = 1,

RCONSt − ρRCONSt−1, for t = 2, 3, · · · , n,

CONST∗t =



√
1 − ρ2, for t = 1,

1 − ρ, for t = 2, 3, · · · , n,
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RYD∗t =



√
1 − ρ2RYDt, for t = 1,

RYDt − ρRYDt−1, for t = 2, 3, · · · , n.

• MLE with the restriction ρ = 0 (Equation 1) solves:

max
β,σ2

ε

log L(β, σ2
ε , 0)

Restricted MLE =⇒ β̃, σ̃2
ε

Log of likelihood function = -431.289

• MLE without the restriction ρ = 0 (Equation 3) solves:

max
β,σ2

ε ,ρ
log L(β, σ2

ε , ρ)

Unrestricted MLE =⇒ β̂, σ̂2
ε , ρ̂

Log of likelihood function = -385.419
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The likelihood ratio test statistic is:

−2 log(λ) = −2 log
(L(β̃, σ̃2

ε , 0)

L(β̂, σ̂2
ε , ρ̂)

)
= −2

(
log L(β̃, σ̃2

ε , 0) − log L(β̂, σ̂2
ε , ρ̂)

)

= −2
(
−431.289 − (−385.419)

)
= 91.74.

The asymptotic distribution is given by:

−2 log(λ) ∼ χ2(G),

where G is the number of the restrictions, i.e., G = 1 in this case.

The 1% upper probability point of χ2(1) is 6.635.

91.74 > 6.635

Therefore, H0 : ρ = 0 is rejected.

There is serial correlation in the error term.
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2. Equation 1 (Test of Serial Correlation −→ Lagrange Multiplier Test)

Equation 2 is:

@RESt = ρ@RESt−1 + εt, εt ∼ N(0, σ2
ε ),

where @RESt = RCONSt − β̂1 − β̂2RYDt, and β̂1 and β̂2 are OLSEs.

The null hypothesis is H0 : ρ = 0

@RES(-1) .950693 .053301 17.8362 [.000]

Therefore, the Lagrange multiplier test statistic is 17.83622 = 318.13 > 6.635.

H0 : ρ = 0 is rejected.

3. Equation 3 (Test of Serial Correlation −→ Wald Test)

230



Equation 3 is:

RCONSt = β1 + β2RYDt + ut, ut = ρut−1 + εt, εt ∼ iid N(0, σ2
ε )

The null hypothesis is H0 : ρ = 0

RHO .945025 .045843 20.6143 [.000]

The Wald test statistics is 20.61432 = 424.95, which is compared with χ2(1).

4. Equation 1 vs. NONLINEAR LEAST SQUARES (Choice of Functional Form –

linear):

NONLINEAR LEAST SQUARES estimates:

RCONSt = a1 + a2
RYDa3

t − 1
a3

+ ut.
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When a3 = 1, we have:

RCONSt = (a1 − a2) + a2RYDt + ut,

which is equivalent to Equation 1.

The null hypothesis is H0 : a3 = 1, where G = 1.

• MLE with a3 = 1 MLE (Equation 1)

Log of likelihood function = -431.289

• MLE without a3 = 1 (NONLINEAR LEAST SQUARES)

Log of likelihood function = -414.362

The likelihood ratio test statistic is given by:

−2 log(λ) = −2
(
−431.289 − (−414.362)

)
= 33.854.
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The 1% upper probability point of χ2(1) is 6.635.

33.854 > 6.635

H0 : a3 = 1 is rejected by the likelihood ratio test.

Therefore, the functional form of the regression model is not linear.

5. Equation 4 vs. NONLINEAR LEAST SQUARES (Choice of Functional Form –

log-linear):

In NONLINEAR LEAST SQUARES, i.e.,

RCONSt = a1 + a2
RYDa3

t − 1
a3

+ ut,

if a3 = 0, we have:

RCONSt = a1 + a2 log(RYDt) + ut,
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which is equivalent to Equation 3.

The null hypothesis is H0 : a3 = 0, where G = 1.

• MLE with a3 = 0 (Equation 3)

Log of likelihood function = -495.418

• MLE without a3 = 0 (NONLINEAR LEAST SQUARES)

Log of likelihood function = -414.362

The likelihood ratio test statistic is:

−2 log(λ) = −2
(
−495.418 − (−414.362)

)
= 162.112 > 6.635.

Therefore, H0 : a3 = 0 is rejected.

As a result, the functional form of the regression model is not log-linear, either.

234



6. Equation 1 vs. Equation 5 (Simultaneous Test of Serial Correlation and

Linear Function):

Equation 5 is:

RCONSt = a1 + a2
RYDa3

t − 1
a3

+ ut, ut = ρut−1 + εt, εt ∼ iid N(0, σ2
ε )

The null hypothesis is H0 : a3 = 1, ρ = 0

Restricted MLE =⇒ Equation 1

Unrestricted MLE =⇒ Equation 4

Remark: In Lines 14–16 of PROGRAM, we have estimated Equation 4, given

a3 = 0.00, 0.01, 0.02, · · ·.

As a result, a3 = 1.15 gives us the maximum log-likelihood.
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The likelihood ratio test statistic is:

−2 log(λ) = −2
(
−431.289 − (−383.807)

)
= 94.964.

−2 log(λ) ∼ χ2(2) in this case.

The 1% upper probability point of χ2(2) is 9.210.

94.964 > 9.210

H0 : a3 = 1, ρ = 0 is rejected.

236



Equation 3 vs. Equation 5 vs. (Taking into account serially correlated

errors, Choice of Functional Form – linear):

The null hypothesis is H0 : a3 = 1

From Equation 3,

Log likelihood = -385.419

From Equation 5,

Log likelihood = -383.807

2(−383.807 − (−385.419)) = 3.224 < 6.635.

H0 : a3 = 1 is not rejected, given ρ , 0.

Thus, if serial correlation is taken into account, the regression model is linear.
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