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1 Question 1

1.1 Derive the ordinary least squares estimators of α and β,
which should be denoted by α̂ and β̂.

From the regression model, we have

ut = yt − α− βXt

Let J be the sum of residuals, then

J =
∑
t

u2
t =

∑
t

(yt − α− βXt)
2 (1)

The extreme value of J can be calculated by taking the first order condition(FOC)
∂J

∂α
= −2

∑
t (yt − α− βXt)

∂J

∂β
= −2

∑
t Xt (yt − α− βXt)

(2)

The second order condition(SOC) of equation (1) is

H =


∂2J

∂2α

∂2J

∂α∂β
∂2J

∂β∂α

∂2J

∂2β

 =

(
2T 2

∑
tXt

2
∑

t Xt 2
∑

tX
2
t

)

and the determinant of H is

|H| =

(
2T · 2

∑
t

X2
t

)
−

(
2
∑
t

Xt · 2
∑
t

Xt

)

= 4T 2

 1

T

∑
t

X2
t −

(∑
t

Xt

T

)2


= 4T 2V (Xt) > 0,
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therefore J has the minimum value when equation (3) equals to 0
∂J

∂α
= −2

∑
t

(
yt − α̂− β̂Xt

)
= 0

∂J

∂β
= −2

∑
tXt

(
yt − α̂− β̂Xt

)
= 0


α̂ = ȳt − β̂X̄

β̂ =

∑
t Xt (yt − ȳ)∑

t Xt

(
Xt − X̄

) (3)

Moreover, we can rewrite the estimator of β̂. The covariance between yt and Xt,
Cov(Xt, yt), is

Cov(Xt, yt) = E [(Xt − E(Xt))(yt − E(yt))] ,

so the sample covariance between yt and Xt, SX,y, is

SX,y =
1

T − 1

∑
t

(Xt − X̄)(yt − ȳ)

=
1

T − 1

∑
t

(Xtyt −Xtȳ − X̄yt + X̄ȳ)

=
1

T − 1
(
∑
t

Xtyt − ȳ
∑
t

Xt − X̄
∑
t

yt + TX̄ȳ)

=
1

T − 1
(
∑
t

Xtyt − ȳ
∑
t

Xt)

=
1

T − 1

∑
t

Xt(yt − ȳ)

Similarly, the sample variance of Xt, SXX , is

SX,X =
1

T − 1

∑
t

(Xt − X̄)2

=
1

T − 1
(
∑
t

X2
t − 2X̄

∑
t

Xt + TX̄2)

=
1

T − 1
(
∑
t

X2
t − X̄

∑
t

Xt)

=
1

T − 1

∑
t

Xt(Xt − X̄)
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Substitute β̂ in equation (3) with SX,y and SX,X ,

β̂ =
SX,y

SX,X

=

∑
t(Xt − X̄)(yt − ȳ)∑

t(Xt − X̄)2
(4)

Finally, we have

(α̂, β̂) = (ȳt − β̂X̄,

∑
t(Xt − X̄)(yt − ȳ)∑

t(Xt − X̄)2
) (5)

1.2 Obtain mean and variance of β̂.

From equation (4) and the process of SX,y and SX,X , we can obtain

β̂ =

∑
t(Xt − X̄)(yt − ȳ)∑

t(Xt − X̄)2
=

∑
t yt(Xt − X̄)− ȳ

∑
t(Xt − X̄)∑

t(Xt − X̄)2

=

∑
t yt(Xt − X̄)∑
t(Xt − X̄)2

=

∑
t(Xt − X̄)(α + βXt + ut)∑

t(Xt − X̄)2

=
α
∑

t(Xt − X̄) + β
∑

t Xt(Xt − X̄) +
∑

t ut(Xt − X̄))∑
t(Xt − X̄)2

= β +

∑
t ut(Xt − X̄)∑
t(Xt − X̄)2

= β +
∑
t

ωtut

where ωt = (Xt − X̄)/
∑

t(Xt − X̄)2

Since ut
iid∼ (0, σ2),

E(β̂) = β +
∑
t

ωtE(ut) = β (6)

Besides, the variance of ut can be written as

V (ut) = E(u2
t )− E(ut)

2 = E(u2
t ) = σ2

The variance of β̂ is

V (β̂) = E[(β̂ − E(β̂))2] = E[(β̂ − β))2] = E[(
∑
t

ωtut)
2]

= E[
∑
t

ω2
t u

2
t +

∑
t

∑
s ̸=t

ωtutωsus]

=
∑
t

ω2
tE(u2

t ) +
∑
t

∑
s ̸=t

ωtωsE(utus)

= σ2

∑
t(Xt − X̄)2

(
∑

t(Xt − X̄)2)2
+
∑
t

∑
s ̸=t

ωtωsE(utus)
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Since ut are identically independently distributed, E(utus) = E(ut)E(us) = 0.
Therefore,

V (β̂) =
σ2∑

t(Xt − X̄)2
(7)

1.3 Obtain mean and variance of α̂.

From the regression model and equation (3), we have

ȳ = α + βX̄ + ū

α̂ = α + βX̄ + ū− β̂X̄

E(α̂) = α + (β − E(β̂))X̄ + E(ū) = α (8)

V (α̂) = E[(α̂− E(α̂))2] = E[(α̂− α2)]

= E[(ū− (β̂ − β)X̄)2]

= E[ū2 + (β̂ − β)2X̄2 − 2(β̂ − β)X̄ū]

= E(ū2) + X̄2E[(β̂ − β)2]− 2X̄E((β̂ − β)ū)

Similar to the process of the variance of β̂, we can derive

E(ū2) = E[(

∑
t ut

T
)2] =

1

T 2
E[(
∑
t

ut)
2]

=
1

T 2
E[
∑
t

u2
t +

∑
t

∑
s ̸=t

utus]

=
1

T 2
[
∑
t

E(u2
t ) +

∑
t

∑
s ̸=t

E(utus)]

=
1

T 2
(Tσ2) =

σ2

T

X̄2E[(β̂ − β)2] = X̄2V (β̂) =
σ2X̄2∑

t(Xt − X̄)2
(9)
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X̄E((β̂ − β)ū) = X̄E[

∑
t(Xt − X̄)ū∑
t(Xt − X̄)2

∑
s us

T
]

=
X̄

T
∑

t(Xt − X̄)2
E[
∑
t

(Xt − X̄)ut

∑
s

us]

=
X̄

T
∑

t(Xt − X̄)2
E[
∑
t

(Xt − X̄)(u2
t +

∑
s ̸=t

utus)]

=
X̄

T
∑

t(Xt − X̄)2
[
∑
t

(Xt − X̄)(E(u2
t ) +

∑
s ̸=t

E(utus))]

=
X̄

T
∑

t(Xt − X̄)2
[σ2
∑
t

(Xt − X̄)]

=
σ2X̄

∑
t(Xt − X̄)

T
∑

t(Xt − X̄)2
= 0

Therefore, the variance of α̂ is

V (α̂) =
σ2

T
+

σ2X̄2∑
t(Xt − X̄)2

=
σ2
∑

t X
2
t

T
∑

t(Xt − X̄)2
(10)

1.4 Prove that β̂ is a linear estimator of β.

According to the process of 1.2, β̂ can be derived as

β̂ =
∑
t

ωtyt (11)

where ωt = (Xt − X̄)/
∑

t(Xt − X̄)2.

Since Xt are nonstochastic and there is a linear relationship between Xt and yt, β̂ is
a linear estimator of β

1.5 Prove that β̂ is a linear unbiased estimator of β.

From equation (6) in 1.2, we have
E(β̂) = β (12)

It shows that β̂ is an unbiased estimator of β.

1.6 Prove that β̂ has minimum variance within a class of linear
unbiased estimators.

Consider the alternative linear unbiased estimator β̃ as follows:

β̃ =
∑
t

ctyt =
∑
t

(ωt + dt)yt,
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where ct = ωt + dt is defined and dt is nonstochastic. Then, β̃ is transformed into:

β̃ =
∑
t

(ωt + dt)(α + βXt + ut)

= α
∑
t

ωt + β
∑
t

ωtXt +
∑
t

ωtut + α
∑
t

dt + β
∑
t

dtXt +
∑
t

dtut

= β + α
∑
t

dt + β
∑
t

dtXt +
∑
t

ωtut +
∑
t

dtut.

Taking the expectation on both sides of the above equation, we obtain:

E(β̃) = β + α
∑
t

dt + β
∑
t

dtXt +
∑
t

ωtE(ut) +
∑
t

dtE(ut)

= β + α
∑
t

dt + β
∑
t

dtXt.

Note that E(ut) = 0. Since β̃ is assumed to be unbiased, we need the following
conditions: ∑

t

dt = 0,
∑
t

dtXt = 0, (13)

where E(β̃) = β. When these conditions hold, we can rewrite β̃ as:

β̃ = β +
∑
t

(ωt + dt)ut.

The variance of β̃ is derived as :

V (β̃) = V (β +
∑
t

(ωt + dt)ut) = V (
∑
t

(ωt + dt)ut) =
∑
t

V ((ωt + dt)ut)

=
∑
t

(ωt + dt)
2V (ut) = σ2(

∑
t

ω2
t + 2

∑
t

ωtdt +
∑
t

d2t ).

Note that V (ut) = σ2. From the unbiasedness of β̃, using result (13) we obtain:∑
t

ωtdt =

∑
t(Xt − X̄)dt∑
t(Xt − X̄)2

=

∑
t xtdt − X̄

∑
t dt∑

t(Xt − X̄)2
= 0,

from which we can obtain that:

V (β̃) = σ2(
∑
t

ω2
t +

∑
t

d2t )

= σ2
∑
t

ω2
t + σ2

∑
t

d2t

= V (β̂) + σ2
∑
t

d2t

≥ V (β̂),
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for the reason that
∑

t d
2
t ≥ 0. Thus, the OLS estimator β̂ gives us the minimum variance

linear unbiased estimator.

1.7 Prove that β̂ is a consistent estimator of β.

From equation (7), we have V (β̂) = σ2∑
t(Xt−X̄)2

then according to the assumption that

1

T

∑
t

(Xt − X̄)2
p→ m < ∞,

when T → ∞, we obtain that:

P (|β̂ − β| > ϵ) ≤ σ2
∑

t ω
2
t

ϵ2
=

σ2T
∑

t ω
2
t

Tϵ2
→ 0,

where
∑

t ω
2
t → 0 because T

∑
t ω

2
t → 1

m
from the assumption.

Thus we have:
β̂ → β as T → ∞.

1.8 Derive an asymptotic distribution of
√
T (β̂ − β). Note that

a distribution of ut is not assumed.

Note that β̂ = β +
∑

t ωtut. From the Central Limit Theorem, we have

β̂ − E(β̂)√
V (β̂)

=

∑
t ωtut

σ
√∑

t ω
2
t

=
β̂ − β

σ/
√∑

t(Xt − X̄)2
→ N(0, 1),

which can be rewritten as √
T (β̂ − β)

σ/
√
(1/T )

∑
t(Xt − X̄)2

.

Replacing (1/T )
∑

t(Xt − X̄)2 by its converged value m, we have

√
T (β̂ − β)

σ/
√
m

→ N(0, 1),

which implies that
√
T (β̂ − β) → N(0,

σ2

m
).
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1.9 As an extra assumption, suppose that ut is normally dis-
tributed for all t. Derive an exact distribution of β̂, using
the moment-generating function.

The moment generating function of β̂ is

Mβ̂(θ) = E(exp{(β +
∑
t

ωtut)θ})

= eβθ
T∏
t=1

E(eθωtut).

Since the moment generating function of ut ∼ N(0, σ2) is

Mut(θ) = E(eθut) = exp{σ
2θ2

2
},

we can rewrite

Mβ̂(θ) = eβθ
T∏
t=1

E(e(θωt)ut)

= eβθ
T∏
t=1

exp{σ
2(θωt)

2

2
}

= exp{βθ + θ2σ2
∑

t ω
2
t

2
},

which implies that the exact distribution of β̂ is

β̂ ∼ N(β, σ2
∑
t

ω2
t ).

1.10

Set Z = β̂−β

σ
√∑

t ω
2
t

. Then Z ∼ N(0, 1) since β̂ ∼ N(β, σ2
∑

t ω
2
t ).

From the definition of χ2 distribution we know that

(T − 2)s2

σ2
∼ χ2(T − 2)

, where (T − 2) is the degree of freedom.
Since the t distribution is defined as Z√

V/k
∼ t(k) for z ∼ N(0, 1), V ∼ χ2(k) and Z

is independent of V , in this condition, V = (T−2)s2

σ2 and k = T − 2. Thus we obtain that

Z√
V/k

=
β̂ − β

σ
√∑

t ω
2
t

/√
(T − 2)s2

σ2

/
(T − 2)

=
β̂ − β

s
√∑

t ω
2
t

∼ t(T − 2).
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