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1 Question 1

1.1 Derive the ordinary least squares estimators of o and p,
which should be denoted by & and }S.

From the regression model, we have
up =y —a— X,

Let J be the sum of residuals, then
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The extreme value of J can be calculated by taking the first order condition(FOC)
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The second order condition(SOC) of equation (1) is
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and the determinant of H is
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therefore J has the minimum value when equation (3) equals to 0
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Moreover, we can rewrite the estimator of B . The covariance between y; and X,
Cov(Xy,yp), 18
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so the sample covariance between y, and X;, Sx,, is
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Similarly, the sample variance of X;, Sxy, is
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Substitute 3 in equation (3) with S, and Sy x,
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Finally, we have
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1.2 Obtain mean and variance of B

From equation (4) and the process of Sx, and Sx x, we can obtain

> (Xi — X)(yt — ) Zt Ye( Xy — ) - th(Xt X)

= Zt(Xt - 7) Zt(Xt )

X = X)) 3 (X = X) (ot BX + uy)
Zt(Xt - Xz Zt(Xti ) -
_a (K= X)+ B3, Xa(Xy = X) + 5 w(Xy — X))
B Zt(Xt - X)2
o 2 m(X — X)
BRI TE A
=0+ Zwtut
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Since u; ~ (O a?),
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Besides, the variance of u; can be written as
V(w) = B(u}) — E(uw)* = E(uf) = 0”
The variance of B is
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Since u; are identically independently distributed, F(usus) = E(u:)E(us) = 0.

Therefore,
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1.3 Obtain mean and variance of &.

From the regression model and equation (3), we have

y=a+pX+u

Similar to the process of the variance of 5, we can derive
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Therefore, the variance of & is
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1.4 Prove that B is a linear estimator of S.
According to the process of 1.2, B can be derived as
B = Zwtyt (11)
t

where w; = (X, — X)/ >, (X; — X)%
Since X; are nonstochastic and there is a linear relationship between X; and v, 3 is
a linear estimator of 3

N

1.5 Prove that B is a linear unbiased estimator of f.

From equation (6) in 1.2, we have )
EB)=p (12)

It shows that B is an unbiased estimator of .

1.6 Prove that § has minimum variance within a class of linear
unbiased estimators.

Consider the alternative linear unbiased estimator 5 as follows:

B= thyt = Z(Wt + di)yr,
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where ¢; = w; + d; is defined and d; is nonstochastic. Then, 5 is transformed into:
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Taking the expectation on both sides of the above equation, we obtain:
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Note that F(u;) = 0. Since 5 is assumed to be unbiased, we need the following
conditions:
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where E (B) = (3. When these conditions hold, we can rewrite B as:
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The variance of [ is derived as :
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Note that V(u;) = ¢%. From the unbiasedness of 3, using result (13) we obtain:
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from which we can obtain that:
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for the reason that Y, d? > 0. Thus, the OLS estimator B gives us the minimum variance
linear unbiased estimator.

1.7 Prove that B is a consistent estimator of [.

From equation (7), we have V() = then according to the assumption that
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where Y, w? — 0 because T'>", wf — = from the assumption.
Thus we have: R
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1.8 Derive an asymptotic distribution of \/T(B — ). Note that
a distribution of ut is not assumed.

Note that 3 = [+ >, wiuy. From the Central Limit Theorem, we have
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1.9 As an extra assumption, suppose that u; is normally dis-
tributed for all t. Derive an exact distribution of 3, using
the moment-generating function.

The moment generating function of B\ is
M3(0) = E(exp{(8 + Zwtut)é})
t
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Since the moment generating function of u; ~ N(0,0?) is

292

M, (0) = B(e") = exp{——1},

we can rewrite
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which implies that the exact distribution of 5 is
B~ N(Bo* Y i),
t
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From the definition of x? distribution we know that
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, where (T — 2) is the degree of freedom.
Since the ¢ distribution is defined as
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