Solutions of Homework 1

Wang Xin, Zheng Xuzhu

May 24, 2022

1 Question 1

1.1 Derive the ordinary least squares estimators of α and β, which should be denoted by $\hat{\alpha}$ and $\hat{\beta}$.

From the regression model, we have

$$
u_{t}=y_{t}-\alpha-\beta X_{t}
$$

Let J be the sum of residuals, then

$$
\begin{equation*}
J=\sum_{t} u_{t}^{2}=\sum_{t}\left(y_{t}-\alpha-\beta X_{t}\right)^{2} \tag{1}
\end{equation*}
$$

The extreme value of J can be calculated by taking the first order condition(FOC)

$$
\left\{\begin{array}{l}
\frac{\partial J}{\partial \alpha}=-2 \sum_{t}\left(y_{t}-\alpha-\beta X_{t}\right) \tag{2}\\
\frac{\partial J}{\partial \beta}=-2 \sum_{t} X_{t}\left(y_{t}-\alpha-\beta X_{t}\right)
\end{array}\right.
$$

The second order condition(SOC) of equation (1) is

$$
\mathbf{H}=\left(\begin{array}{cc}
\frac{\partial^{2} J}{\partial^{2} \alpha} & \frac{\partial^{2} J}{\partial \alpha \partial \beta} \\
\frac{\partial^{2} J}{\partial \beta \partial \alpha} & \frac{\partial^{2} J}{\partial^{2} \beta}
\end{array}\right)=\left(\begin{array}{cc}
2 T & 2 \sum_{t} X_{t} \\
2 \sum_{t} X_{t} & 2 \sum_{t} X_{t}^{2}
\end{array}\right)
$$

and the determinant of \mathbf{H} is

$$
\begin{aligned}
|H| & =\left(2 T \cdot 2 \sum_{t} X_{t}^{2}\right)-\left(2 \sum_{t} X_{t} \cdot 2 \sum_{t} X_{t}\right) \\
& =4 T^{2}\left(\frac{1}{T} \sum_{t} X_{t}^{2}-\left(\sum_{t} \frac{X_{t}}{T}\right)^{2}\right) \\
& =4 T^{2} V\left(X_{t}\right)>0
\end{aligned}
$$

therefore J has the minimum value when equation (3) equals to 0

$$
\begin{gather*}
\left\{\begin{array}{l}
\frac{\partial J}{\partial \alpha}=-2 \sum_{t}\left(y_{t}-\hat{\alpha}-\hat{\beta} X_{t}\right)=0 \\
\frac{\partial J}{\partial \beta}=-2 \sum_{t} X_{t}\left(y_{t}-\hat{\alpha}-\hat{\beta} X_{t}\right)=0
\end{array}\right. \\
\left\{\begin{array}{l}
\hat{\alpha}=\bar{y}_{t}-\hat{\beta} \bar{X} \\
\hat{\beta}=\frac{\sum_{t} X_{t}\left(y_{t}-\bar{y}\right)}{\sum_{t} X_{t}\left(X_{t}-\bar{X}\right)}
\end{array}\right. \tag{3}
\end{gather*}
$$

Moreover, we can rewrite the estimator of $\hat{\beta}$. The covariance between y_{t} and X_{t}, $\operatorname{Cov}\left(X_{t}, y_{t}\right)$, is

$$
\operatorname{Cov}\left(X_{t}, y_{t}\right)=E\left[\left(X_{t}-E\left(X_{t}\right)\right)\left(y_{t}-E\left(y_{t}\right)\right)\right],
$$

so the sample covariance between y_{t} and $X_{t}, S_{X, y}$, is

$$
\begin{aligned}
S_{X, y} & =\frac{1}{T-1} \sum_{t}\left(X_{t}-\bar{X}\right)\left(y_{t}-\bar{y}\right) \\
& =\frac{1}{T-1} \sum_{t}\left(X_{t} y_{t}-X_{t} \bar{y}-\bar{X} y_{t}+\bar{X} \bar{y}\right) \\
& =\frac{1}{T-1}\left(\sum_{t} X_{t} y_{t}-\bar{y} \sum_{t} X_{t}-\bar{X} \sum_{t} y_{t}+T \bar{X} \bar{y}\right) \\
& =\frac{1}{T-1}\left(\sum_{t} X_{t} y_{t}-\bar{y} \sum_{t} X_{t}\right) \\
& =\frac{1}{T-1} \sum_{t} X_{t}\left(y_{t}-\bar{y}\right)
\end{aligned}
$$

Similarly, the sample variance of $X_{t}, S_{X X}$, is

$$
\begin{aligned}
S_{X, X} & =\frac{1}{T-1} \sum_{t}\left(X_{t}-\bar{X}\right)^{2} \\
& =\frac{1}{T-1}\left(\sum_{t} X_{t}^{2}-2 \bar{X} \sum_{t} X_{t}+T \bar{X}^{2}\right) \\
& =\frac{1}{T-1}\left(\sum_{t} X_{t}^{2}-\bar{X} \sum_{t} X_{t}\right) \\
& =\frac{1}{T-1} \sum_{t} X_{t}\left(X_{t}-\bar{X}\right)
\end{aligned}
$$

Substitute $\hat{\beta}$ in equation (3) with $S_{X, y}$ and $S_{X, X}$,

$$
\begin{equation*}
\hat{\beta}=\frac{S_{X, y}}{S_{X, X}}=\frac{\sum_{t}\left(X_{t}-\bar{X}\right)\left(y_{t}-\bar{y}\right)}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}} \tag{4}
\end{equation*}
$$

Finally, we have

$$
\begin{equation*}
(\hat{\alpha}, \hat{\beta})=\left(\bar{y}_{t}-\hat{\beta} \bar{X}, \frac{\sum_{t}\left(X_{t}-\bar{X}\right)\left(y_{t}-\bar{y}\right)}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}}\right) \tag{5}
\end{equation*}
$$

1.2 Obtain mean and variance of $\hat{\beta}$.

From equation (4) and the process of $S_{X, y}$ and $S_{X, X}$, we can obtain

$$
\begin{aligned}
\hat{\beta} & =\frac{\sum_{t}\left(X_{t}-\bar{X}\right)\left(y_{t}-\bar{y}\right)}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}}=\frac{\sum_{t} y_{t}\left(X_{t}-\bar{X}\right)-\bar{y} \sum_{t}\left(X_{t}-\bar{X}\right)}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}} \\
& =\frac{\sum_{t} y_{t}\left(X_{t}-\bar{X}\right)}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}}=\frac{\sum_{t}\left(X_{t}-\bar{X}\right)\left(\alpha+\beta X_{t}+u_{t}\right)}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}} \\
& =\frac{\left.\alpha \sum_{t}\left(X_{t}-\bar{X}\right)+\beta \sum_{t} X_{t}\left(X_{t}-\bar{X}\right)+\sum_{t} u_{t}\left(X_{t}-\bar{X}\right)\right)}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}} \\
& =\beta+\frac{\sum_{t} u_{t}\left(X_{t}-\bar{X}\right)}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}} \\
& =\beta+\sum_{t} \omega_{t} u_{t}
\end{aligned}
$$

where $\omega_{t}=\left(X_{t}-\bar{X}\right) / \sum_{t}\left(X_{t}-\bar{X}\right)^{2}$
Since $u_{t} \stackrel{\text { iid }}{\sim}\left(0, \sigma^{2}\right)$,

$$
\begin{equation*}
E(\hat{\beta})=\beta+\sum_{t} \omega_{t} E\left(u_{t}\right)=\beta \tag{6}
\end{equation*}
$$

Besides, the variance of u_{t} can be written as

$$
V\left(u_{t}\right)=E\left(u_{t}^{2}\right)-E\left(u_{t}\right)^{2}=E\left(u_{t}^{2}\right)=\sigma^{2}
$$

The variance of $\hat{\beta}$ is

$$
\begin{aligned}
V(\hat{\beta}) & \left.=E\left[(\hat{\beta}-E(\hat{\beta}))^{2}\right]=E[(\hat{\beta}-\beta))^{2}\right]=E\left[\left(\sum_{t} \omega_{t} u_{t}\right)^{2}\right] \\
& =E\left[\sum_{t} \omega_{t}^{2} u_{t}^{2}+\sum_{t} \sum_{s \neq t} \omega_{t} u_{t} \omega_{s} u_{s}\right] \\
& =\sum_{t} \omega_{t}^{2} E\left(u_{t}^{2}\right)+\sum_{t} \sum_{s \neq t} \omega_{t} \omega_{s} E\left(u_{t} u_{s}\right) \\
& =\sigma^{2} \frac{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}}{\left(\sum_{t}\left(X_{t}-\bar{X}\right)^{2}\right)^{2}}+\sum_{t} \sum_{s \neq t} \omega_{t} \omega_{s} E\left(u_{t} u_{s}\right)
\end{aligned}
$$

Since u_{t} are identically independently distributed, $E\left(u_{t} u_{s}\right)=E\left(u_{t}\right) E\left(u_{s}\right)=0$. Therefore,

$$
\begin{equation*}
V(\hat{\beta})=\frac{\sigma^{2}}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}} \tag{7}
\end{equation*}
$$

1.3 Obtain mean and variance of $\hat{\alpha}$.

From the regression model and equation (3), we have

$$
\begin{gather*}
\bar{y}=\alpha+\beta \bar{X}+\bar{u} \\
\hat{\alpha}=\alpha+\beta \bar{X}+\bar{u}-\hat{\beta} \bar{X} \\
E(\hat{\alpha})=\alpha+(\beta-E(\hat{\beta})) \bar{X}+E(\bar{u})=\alpha \tag{8}\\
V(\hat{\alpha})=E\left[(\hat{\alpha}-E(\hat{\alpha}))^{2}\right]=E\left[\left(\hat{\alpha}-\alpha^{2}\right)\right] \\
=E\left[(\bar{u}-(\hat{\beta}-\beta) \bar{X})^{2}\right] \\
=E\left[\bar{u}^{2}+(\hat{\beta}-\beta)^{2} \bar{X}^{2}-2(\hat{\beta}-\beta) \bar{X} \bar{u}\right] \\
=E\left(\bar{u}^{2}\right)+\bar{X}^{2} E\left[(\hat{\beta}-\beta)^{2}\right]-2 \bar{X} E((\hat{\beta}-\beta) \bar{u})
\end{gather*}
$$

Similar to the process of the variance of $\hat{\beta}$, we can derive

$$
\begin{align*}
E\left(\bar{u}^{2}\right) & =E\left[\left(\frac{\sum_{t} u_{t}}{T}\right)^{2}\right]=\frac{1}{T^{2}} E\left[\left(\sum_{t} u_{t}\right)^{2}\right] \\
& =\frac{1}{T^{2}} E\left[\sum_{t} u_{t}^{2}+\sum_{t} \sum_{s \neq t} u_{t} u_{s}\right] \\
& =\frac{1}{T^{2}}\left[\sum_{t} E\left(u_{t}^{2}\right)+\sum_{t} \sum_{s \neq t} E\left(u_{t} u_{s}\right)\right] \\
& =\frac{1}{T^{2}}\left(T \sigma^{2}\right)=\frac{\sigma^{2}}{T}
\end{align*} \bar{X}^{2} E\left[(\hat{\beta}-\beta)^{2}\right]=\bar{X}^{2} V(\hat{\beta})=\frac{\sigma^{2} \bar{X}^{2}}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}} .
$$

$$
\begin{aligned}
\bar{X} E((\hat{\beta}-\beta) \bar{u}) & =\bar{X} E\left[\frac{\sum_{t}\left(X_{t}-\bar{X}\right) \bar{u}}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}} \frac{\sum_{s} u_{s}}{T}\right] \\
& =\frac{\bar{X}}{T \sum_{t}\left(X_{t}-\bar{X}\right)^{2}} E\left[\sum_{t}\left(X_{t}-\bar{X}\right) u_{t} \sum_{s} u_{s}\right] \\
& =\frac{\bar{X}}{T \sum_{t}\left(X_{t}-\bar{X}\right)^{2}} E\left[\sum_{t}\left(X_{t}-\bar{X}\right)\left(u_{t}^{2}+\sum_{s \neq t} u_{t} u_{s}\right)\right] \\
& =\frac{\bar{X}}{T \sum_{t}\left(X_{t}-\bar{X}\right)^{2}}\left[\sum_{t}\left(X_{t}-\bar{X}\right)\left(E\left(u_{t}^{2}\right)+\sum_{s \neq t} E\left(u_{t} u_{s}\right)\right)\right] \\
& =\frac{\bar{X}}{T \sum_{t}\left(X_{t}-\bar{X}\right)^{2}}\left[\sigma^{2} \sum_{t}\left(X_{t}-\bar{X}\right)\right] \\
& =\frac{\sigma^{2} \bar{X} \sum_{t}\left(X_{t}-\bar{X}\right)}{T \sum_{t}\left(X_{t}-\bar{X}\right)^{2}}=0
\end{aligned}
$$

Therefore, the variance of $\hat{\alpha}$ is

$$
\begin{equation*}
V(\hat{\alpha})=\frac{\sigma^{2}}{T}+\frac{\sigma^{2} \bar{X}^{2}}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}}=\frac{\sigma^{2} \sum_{t} X_{t}^{2}}{T \sum_{t}\left(X_{t}-\bar{X}\right)^{2}} \tag{10}
\end{equation*}
$$

1.4 Prove that $\hat{\beta}$ is a linear estimator of β.

According to the process of $1.2, \hat{\beta}$ can be derived as

$$
\begin{equation*}
\hat{\beta}=\sum_{t} \omega_{t} y_{t} \tag{11}
\end{equation*}
$$

where $\omega_{t}=\left(X_{t}-\bar{X}\right) / \sum_{t}\left(X_{t}-\bar{X}\right)^{2}$.
Since X_{t} are nonstochastic and there is a linear relationship between X_{t} and $y_{t}, \hat{\beta}$ is a linear estimator of β

1.5 Prove that $\hat{\beta}$ is a linear unbiased estimator of β.

From equation (6) in 1.2, we have

$$
\begin{equation*}
E(\hat{\beta})=\beta \tag{12}
\end{equation*}
$$

It shows that $\hat{\beta}$ is an unbiased estimator of β.

1.6 Prove that $\hat{\beta}$ has minimum variance within a class of linear unbiased estimators.

Consider the alternative linear unbiased estimator $\widetilde{\beta}$ as follows:

$$
\widetilde{\beta}=\sum_{t} c_{t} y_{t}=\sum_{t}\left(\omega_{t}+d_{t}\right) y_{t}
$$

where $c_{t}=\omega_{t}+d_{t}$ is defined and d_{t} is nonstochastic. Then, $\widetilde{\beta}$ is transformed into:

$$
\begin{aligned}
\widetilde{\beta} & =\sum_{t}\left(\omega_{t}+d_{t}\right)\left(\alpha+\beta X_{t}+u_{t}\right) \\
& =\alpha \sum_{t} \omega_{t}+\beta \sum_{t} \omega_{t} X_{t}+\sum_{t} \omega_{t} u_{t}+\alpha \sum_{t} d_{t}+\beta \sum_{t} d_{t} X_{t}+\sum_{t} d_{t} u_{t} \\
& =\beta+\alpha \sum_{t} d_{t}+\beta \sum_{t} d_{t} X_{t}+\sum_{t} \omega_{t} u_{t}+\sum_{t} d_{t} u_{t} .
\end{aligned}
$$

Taking the expectation on both sides of the above equation, we obtain:

$$
\begin{aligned}
E(\widetilde{\beta}) & =\beta+\alpha \sum_{t} d_{t}+\beta \sum_{t} d_{t} X_{t}+\sum_{t} \omega_{t} E\left(u_{t}\right)+\sum_{t} d_{t} E\left(u_{t}\right) \\
& =\beta+\alpha \sum_{t} d_{t}+\beta \sum_{t} d_{t} X_{t} .
\end{aligned}
$$

Note that $E\left(u_{t}\right)=0$. Since $\widetilde{\beta}$ is assumed to be unbiased, we need the following conditions:

$$
\begin{equation*}
\sum_{t} d_{t}=0, \quad \sum_{t} d_{t} X_{t}=0 \tag{13}
\end{equation*}
$$

where $E(\widetilde{\beta})=\beta$. When these conditions hold, we can rewrite $\widetilde{\beta}$ as:

$$
\widetilde{\beta}=\beta+\sum_{t}\left(\omega_{t}+d_{t}\right) u_{t} .
$$

The variance of $\widetilde{\beta}$ is derived as :

$$
\begin{aligned}
V(\widetilde{\beta}) & =V\left(\beta+\sum_{t}\left(\omega_{t}+d_{t}\right) u_{t}\right)=V\left(\sum_{t}\left(\omega_{t}+d_{t}\right) u_{t}\right)=\sum_{t} V\left(\left(\omega_{t}+d_{t}\right) u_{t}\right) \\
& =\sum_{t}\left(\omega_{t}+d_{t}\right)^{2} V\left(u_{t}\right)=\sigma^{2}\left(\sum_{t} \omega_{t}^{2}+2 \sum_{t} \omega_{t} d_{t}+\sum_{t} d_{t}^{2}\right) .
\end{aligned}
$$

Note that $V\left(u_{t}\right)=\sigma^{2}$. From the unbiasedness of $\widetilde{\beta}$, using result (13) we obtain:

$$
\sum_{t} \omega_{t} d_{t}=\frac{\sum_{t}\left(X_{t}-\bar{X}\right) d_{t}}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}}=\frac{\sum_{t} x_{t} d_{t}-\bar{X} \sum_{t} d_{t}}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}}=0
$$

from which we can obtain that:

$$
\begin{aligned}
V(\widetilde{\beta}) & =\sigma^{2}\left(\sum_{t} \omega_{t}^{2}+\sum_{t} d_{t}^{2}\right) \\
& =\sigma^{2} \sum_{t} \omega_{t}^{2}+\sigma^{2} \sum_{t} d_{t}^{2} \\
& =V(\widehat{\beta})+\sigma^{2} \sum_{t} d_{t}^{2} \\
& \geq V(\widehat{\beta}),
\end{aligned}
$$

for the reason that $\sum_{t} d_{t}^{2} \geq 0$. Thus, the OLS estimator $\widehat{\beta}$ gives us the minimum variance linear unbiased estimator.

1.7 Prove that $\hat{\beta}$ is a consistent estimator of β.

From equation (7), we have $V(\hat{\beta})=\frac{\sigma^{2}}{\sum_{t}\left(X_{t}-X\right)^{2}}$ then according to the assumption that

$$
\frac{1}{T} \sum_{t}\left(X_{t}-\bar{X}\right)^{2} \xrightarrow{p} m<\infty
$$

when $T \rightarrow \infty$, we obtain that:

$$
P(|\widehat{\beta}-\beta|>\epsilon) \leq \frac{\sigma^{2} \sum_{t} \omega_{t}^{2}}{\epsilon^{2}}=\frac{\sigma^{2} T \sum_{t} \omega_{t}^{2}}{T \epsilon^{2}} \rightarrow 0
$$

where $\sum_{t} \omega_{t}^{2} \rightarrow 0$ because $T \sum_{t} \omega_{t}^{2} \rightarrow \frac{1}{m}$ from the assumption.
Thus we have:

$$
\widehat{\beta} \rightarrow \beta \text { as } T \rightarrow \infty
$$

1.8 Derive an asymptotic distribution of $\sqrt{T}(\hat{\beta}-\beta)$. Note that a distribution of ut is not assumed.

Note that $\widehat{\beta}=\beta+\sum_{t} \omega_{t} u_{t}$. From the Central Limit Theorem, we have

$$
\frac{\widehat{\beta}-E(\widehat{\beta})}{\sqrt{V(\widehat{\beta})}}=\frac{\sum_{t} \omega_{t} u_{t}}{\sigma \sqrt{\sum_{t} \omega_{t}^{2}}}=\frac{\widehat{\beta}-\beta}{\sigma / \sqrt{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}}} \rightarrow N(0,1),
$$

which can be rewritten as

$$
\frac{\sqrt{T}(\widehat{\beta}-\beta)}{\sigma / \sqrt{(1 / T) \sum_{t}\left(X_{t}-\bar{X}\right)^{2}}} .
$$

Replacing $(1 / T) \sum_{t}\left(X_{t}-\bar{X}\right)^{2}$ by its converged value m, we have

$$
\frac{\sqrt{T}(\widehat{\beta}-\beta)}{\sigma / \sqrt{m}} \rightarrow N(0,1)
$$

which implies that

$$
\sqrt{T}(\widehat{\beta}-\beta) \rightarrow N\left(0, \frac{\sigma^{2}}{m}\right)
$$

1.9 As an extra assumption, suppose that u_{t} is normally distributed for all t. Derive an exact distribution of $\hat{\beta}$, using the moment-generating function.

The moment generating function of $\widehat{\beta}$ is

$$
\begin{aligned}
M_{\widehat{\beta}}(\theta) & =E\left(\exp \left\{\left(\beta+\sum_{t} \omega_{t} u_{t}\right) \theta\right\}\right) \\
& =e^{\beta \theta} \prod_{t=1}^{T} E\left(e^{\theta \omega_{t} u_{t}}\right)
\end{aligned}
$$

Since the moment generating function of $u_{t} \sim N\left(0, \sigma^{2}\right)$ is

$$
M_{u_{t}}(\theta)=E\left(e^{\theta u_{t}}\right)=\exp \left\{\frac{\sigma^{2} \theta^{2}}{2}\right\}
$$

we can rewrite

$$
\begin{aligned}
M_{\widehat{\beta}}(\theta) & =e^{\beta \theta} \prod_{t=1}^{T} E\left(e^{\left(\theta \omega_{t}\right) u_{t}}\right) \\
& =e^{\beta \theta} \prod_{t=1}^{T} \exp \left\{\frac{\sigma^{2}\left(\theta \omega_{t}\right)^{2}}{2}\right\} \\
& =\exp \left\{\beta \theta+\frac{\theta^{2} \sigma^{2} \sum_{t} \omega_{t}^{2}}{2}\right\},
\end{aligned}
$$

which implies that the exact distribution of $\widehat{\beta}$ is

$$
\widehat{\beta} \sim N\left(\beta, \sigma^{2} \sum_{t} \omega_{t}^{2}\right) .
$$

1.10

Set $Z=\frac{\widehat{\beta}-\beta}{\sigma \sqrt{\sum_{t} \omega_{t}^{2}}}$. Then $Z \sim N(0,1)$ since $\widehat{\beta} \sim N\left(\beta, \sigma^{2} \sum_{t} \omega_{t}^{2}\right)$.
From the definition of χ^{2} distribution we know that

$$
\frac{(T-2) s^{2}}{\sigma^{2}} \sim \chi^{2}(T-2)
$$

, where $(T-2)$ is the degree of freedom.
Since the t distribution is defined as $\frac{Z}{\sqrt{V / k}} \sim t(k)$ for $z \sim N(0,1), V \sim \chi^{2}(k)$ and Z is independent of V, in this condition, $V=\frac{(T-2) s^{2}}{\sigma^{2}}$ and $k=T-2$. Thus we obtain that

$$
\begin{aligned}
\frac{Z}{\sqrt{V / k}} & =\frac{\widehat{\beta}-\beta}{\sigma \sqrt{\sum_{t} \omega_{t}^{2}}} / \sqrt{\frac{(T-2) s^{2}}{\sigma^{2}} /(T-2)} \\
& =\frac{\widehat{\beta}-\beta}{s \sqrt{\sum_{t} \omega_{t}^{2}}} \sim t(T-2) .
\end{aligned}
$$

