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1 Question 1

1.1 Derive β̂

From the regression model, we have

u = y −Xβ

Let J be the sum of residuals, then

J = u′u = (y −Xβ)′ (y −Xβ) = y′y + β′X ′Xβ − y′Xβ − β′X ′y

Since y′Xβ = (β′X ′y)′ and β′X ′y is a scalar,

J = y′y + β′X ′Xβ − 2β′X ′y. (1)

The extreme value of J can be calculated by taking the first order condition(FOC).

∂J

∂β̂
= 2X ′Xβ − 2X ′y (2)

∂2J

∂2β
= 2X ′X

The second order condition(SOC) of equation (1) is greater than 0, therefore J has
the minimum value when equation (2) equals to 0.

Here β̂ is the OLS estimator,

∂J

∂β
= 2X ′Xβ̂ − 2X ′y = 0

β̂ = (X ′X)−1X ′y (3)
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1.2 Derive mean and variance of β̂.

From equation (3), we have

β̂ = (X ′X)−1X ′y = (X ′X)−1X ′(Xβ + u)

= β + (X ′X)−1X ′u

As set in question, u
iid∼ N(0, σ2), then we can derive the conditional expectation and

variance for both sides:

E[β̂|X] = E[β + (X ′X)−1X ′u|X] = β + (X ′X)−1X ′E[u|X] = β (4)

V [β̂|X] = V [β + (X ′X)−1X ′u|X]

= (X ′X)−1X ′V [u|X]((X ′X)−1X ′)′

= σ2(X ′X)−1X ′X(X ′X)−1

= σ2(X ′X)−1

(5)

1.3 Derive a distribution of β̂, using the moment-generating
function.

The moment generating function of β̂ is

Mβ̂(θ) = E(exp{θ′(β + (X ′X)−1X ′u)})
= exp(θ′β)E(exp(θ′(X ′X)−1X ′u)).

Since the moment generating function of u ∼ N(0, σ2In) is

Mu(θ) = E(exp(θ′u)) = exp{σ
2θ′θ

2
},

we can rewrite

Mβ̂(θ) = exp(θ′β)Mu(θ
′(X ′X)−1X ′)

= exp(θ′β) exp(
σ2

2
θ′(X ′X)−1θ)

= exp(θ′β +
σ2

2
θ′(X ′X)−1θ),

which indicates that β̂ ∼ N(β, σ2(X ′X)−1).

1.4 Show that s2 =
1

n− k
(y −Xβ̂)′(y −Xβ̂)′ is an unbiased esti-

mator of σ2.

Since β̂ = β + (X ′X)−1X ′u, then
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y −Xβ̂ = y −X(β + (X ′X)−1X ′u)

= (y −Xβ)−X(X ′X)−1X ′u

= (In −X(X ′X)−1X ′)︸ ︷︷ ︸
idempotent and symmetric

u

Let M ≡ In −X(X ′X)−1X ′, then M2 = M,M ′ = M. Thus, s2 can be rewritten as

s2 =
1

n− k
(Mu)′(Mu) =

1

n− k
u′MMu =

1

n− k
u′Mu︸ ︷︷ ︸
scalar

.

Since for scalar u′Mu, tr(u′Mu) = u′Mu,

E(s2) =
1

n− k
E[tr(Muu′)]

=
1

n− k
tr(ME(uu′))

=
1

n− k
σ2(tr(In)− tr((X ′X)−1X ′X))

=
1

n− k
(tr(In)− tr(Ik))

=
1

n− k
σ2(n− k)

= σ2.

1.5 Show that
(n− k)s2

σ2
is distributed as a χ2 random variavble

with n - k degrees of freedom.

Since s2 = 1
n−k

u′Mu, under the assumption that u ∼ N(0, σ2In), the distribution of s2

denotes
(n− k)s2

σ2
=

u′Mu

σ2
∼ χ2(Rank(M)).

Note that for the idempotent and symmetric matrix M , Rank(M) = tr(M) = n− k.

1.6 Show that β̂ is a best linear unbiased estimator.

Consider the alternative linear unbiased estimator β̃ as follows:

β̃ = C︸︷︷︸
k×n

y = C(Xβ + u) = CXβ + Cu.

Then
E(β̃) = CXβ + CE(u) = CXβ
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Since β̃ is assumed to be unbiased, E(β̃) = β holds under the condition:

CX = Ik.

Then we derive that V (β̃) = E(β̃−β)(β̃−β)′ = E[Cu(Cu)′] = E(Cuu′C ′) = CE(uu′)C =

σ2CC ′. Defining C = D + (X ′X)−1X ′, V (β̃) can be rewritten as

V (β̃) = σ2(D + (X ′X)−1X ′)(D + (X ′X)−1X ′)′.

In addition, because of the unbiasedness of β̃, CX = (D+(X ′X)−1X ′)X = DX+Ik = Ik
indicates that DX = 0. Thus,

V (β̃) = σ2(X ′X)−1 + σ2DD′ = V (β̂) + σ2DD′.

V (β̃)− V (β̂) = σ2DD′ is positive semidefinite matrix. V (β̃) ≥ V (β̂) holds.

1.7 Show that
(β̂ − β)′X ′X(β̂ − β)

σ2
∼ χ2(k).

(β̂ − β)′X ′X(β̂ − β) = ((X ′X)−1X ′u)′X ′X(X ′X)−1X ′u

= u′X(X ′X)−1X ′X(X ′X)−1X ′u = u′ X(X ′X)−1X ′︸ ︷︷ ︸
idempotent and symmetric

u

with u ∼ N(0, σ2In),

u′X(X ′X)−1X ′u

σ2
∼ χ2(tr(X(X ′X)−1X ′)).

Note that tr(X(X ′X)−1X ′)) = tr((X ′X)−1X ′X) = tr(Ik) = k. Thus the degree of
freedom is k.

1.8 Show that β̂ is independent of s2 =
1

n− k
(y −Xβ̂)′(y −Xβ̂).

Cov(X, Y ) = 0 ⇐⇒ Cov(g(X), h(Y )) = 0.

s2 =
1

n− k
e′e,

We prove the independence of β̂ to s2 by deriving Cov(β̂, e) = 0 because both β̂ and e
are normal.

Cov(β̂, e) = E(e(β̂ − β)′) = E(Mu((X ′X)−1X ′u)′)

= E(Muu′X(X ′X)−1) = ME(uu′)X(X ′X)−1

= M(σ2In)X(X ′X)−1 = σ2MX(X ′X)−1

= σ2(X(X ′X)−1 −X(X ′X)−1X ′X(X ′X)−1

= σ2(X(X ′X)−1 −X(X ′X)−1)

= 0
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1.9 Show that
(β̂ − β)′X ′X(β̂ − β)/k

(y −Xβ̂)′(y −Xβ̂)/(n− k)
∼ F (k, n− k).

We have proven that

(β̂ − β)′X ′X(β̂ − β)

σ2
=

u′X(X ′X)−1X ′u

σ2
∼ χ2(k)

in question 1.7 and

(y −Xβ̂)′(y −Xβ̂)

σ2
∼ χ2(n− k)

in question 1.4 and 1.5.
Since we proved that β̂ is independent of e, we have

(β̂ − β)′X ′X(β̂ − β)

σ2

/
k

(y −Xβ̂)′(y −Xβ̂)

σ2

/
(n− k)

∼ F(k, n− k).

1.10 Show that
∑

i(yi − ȳ)2 = y′(In − ii′)y, where y = (y1, y2, ..., yn)
′

and i = (1, 1, ..., 1)′.

First, we can simplify the equation as∑
i

(yi − ȳ)2 =
∑
i

yi(yi − ȳ)− ȳ
∑
i

(yi − ȳ) =
∑
i

yi(yi − ȳ) =
∑
i

y2i − ȳ
∑
i

yi

Then each item on the right side can be rewrite as∑
i

y2i = y′y

ȳ =
1

n
i′y =

1

n
y′i∑

i

yi = i′y

Therefore, the above equation is∑
i

(yi − ȳ)2 = y′y − 1

n
y′ii′y = y′(In −

1

n
ii′)y
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1.11 Show that In − 1
nii

′ is symmetric and idempotent.

From the definition of symmetric and idempotent matrix, first we can prove that

(In −
1

n
ii′)(In −

1

n
ii′) = InIn +

1

n2
ii′ii′ − 2

1

n
Inii

′ = In −
1

n
ii′,

which means that In − 1
n
ii′ is idempotent.

Moreover, ii′ and In are n× n symmetric matrices,

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 i′i =

 1 · · · 1
...

. . .
...

1 · · · 1


which can prove that In − 1

n
ii′ are symmetric.

In −
1

n
ii′ =


1− 1

n
− 1

n
· · · − 1

n

− 1
n

1− 1
n

· · · − 1
n

...
...

. . .
...

− 1
n

− 1
n

· · · 1− 1
n


2 Question 2

2.1 What is the distribution of
(X − µi)′(X − µi)

σ2
?

Rewrite the equation into scalars, we can obtain

(X − µi)′(X − µi)

σ2
=

n∑
j=1

(
Xj − µ

σ
)2

Since Xi
iid∼ N(µ, σ2),

Xi − µ

σ

iid∼ N(0, 1) can be easily obtained.

From the definition of chi-squared distribution, we know that Z2 is chi-squared dis-
tributed with 1 degree of freedom if Z is of standard normal distribution.

Then, from the additivity of chi-squared distribution, the n random variables indicate
that

n∑
j=1

(
Xj − µ

σ
)2

iid∼ χ2(n)

In conclusion,
(X − µi)′(X − µi)

σ2
are of chi-squared distribution with n degree of

freedom.
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2.2 Show that (X − µi)′(In − 1
nii

′)(X − µi) =
∑n

j=1(Xj − X̄)

For the right side, which is similar to 1.10, the below equation can be easily derived:

n∑
j=1

(Xj − X̄) = X ′(In −
1

n
ii′)X (6)

As for the left side, it can be expand as

(X − µi)′(In −
1

n
ii′)(X − µi)

= X ′(In −
1

n
ii′)(X − µi)− µi′(In −

1

n
ii′)(X − µi)

(7)

The second term can be simplified as

µi′(In −
1

n
ii′)(X − µi) = (µi′ − 1

n
µi′ii′)(X − µi) = (µi′ − µi′)(X − µi) = 0

So equation (7) continued to be expanded as

(X − µi)′(In −
1

n
ii′)(X − µi)

= X ′(In −
1

n
ii′)(X − µi)

= X ′(In −
1

n
ii′)X −X ′(In −

1

n
ii′)µi

= X ′(In −
1

n
ii′)X

(8)

From equation (6) and equation (8), we can prove that

(X − µi)′(In −
1

n
ii′)(X − µi) =

n∑
j=1

(Xj − X̄)

2.3 Show that
(X − µi)′(In − 1

nii
′)(X − µi)

σ2
∼ χ2(n− 1).

Similar to 1.5 and 2.1, the distribution is derived as

(X − µi)′(In − 1
n
ii′)(X − µi)

σ2
∼ χ2(tr(In −

1

n
ii′))

The properties of trace indicates that

tr(In −
1

n
ii′) = tr(In)− tr(

1

n
ii′) = n− tr(

1

n
i′i) = n− 1

Consequently, we can prove that

(X − µi)′(In − 1
n
ii′)(X − µi)

σ2
∼ χ2(n− 1)
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