Solutions of Homework 1

Wang Xin, Zheng Xuzhu

June 14, 2022

1 Question 1

1.1 Derive $\hat{\beta}$

From the regression model, we have

$$
u=y-X \beta
$$

Let J be the sum of residuals, then

$$
J=u^{\prime} u=(y-X \beta)^{\prime}(y-X \beta)=y^{\prime} y+\beta^{\prime} X^{\prime} X \beta-y^{\prime} X \beta-\beta^{\prime} X^{\prime} y
$$

Since $y^{\prime} X \beta=\left(\beta^{\prime} X^{\prime} y\right)^{\prime}$ and $\beta^{\prime} X^{\prime} y$ is a scalar,

$$
\begin{equation*}
J=y^{\prime} y+\beta^{\prime} X^{\prime} X \beta-2 \beta^{\prime} X^{\prime} y \tag{1}
\end{equation*}
$$

The extreme value of J can be calculated by taking the first order condition(FOC).

$$
\begin{gather*}
\frac{\partial J}{\partial \hat{\beta}}=2 X^{\prime} X \beta-2 X^{\prime} y \tag{2}\\
\frac{\partial^{2} J}{\partial^{2} \beta}=2 X^{\prime} X
\end{gather*}
$$

The second order condition(SOC) of equation (1) is greater than 0 , therefore J has the minimum value when equation (2) equals to 0 .

Here $\hat{\beta}$ is the OLS estimator,

$$
\begin{gather*}
\frac{\partial J}{\partial \beta}=2 X^{\prime} X \hat{\beta}-2 X^{\prime} y=0 \\
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y \tag{3}
\end{gather*}
$$

1.2 Derive mean and variance of $\hat{\beta}$.

From equation (3), we have

$$
\begin{aligned}
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+u) \\
& =\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u
\end{aligned}
$$

As set in question, $u \stackrel{\text { iid }}{\sim} N\left(0, \sigma^{2}\right)$, then we can derive the conditional expectation and variance for both sides:

$$
\begin{align*}
& E[\hat{\beta} \mid X]=E\left[\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \mid X\right]=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} E[u \mid X]=\beta \tag{4}\\
& V[\hat{\beta} \mid X]=V\left[\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \mid X\right] \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} V[u \mid X]\left(\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} \tag{5}\\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{align*}
$$

1.3 Derive a distribution of $\hat{\beta}$, using the moment-generating function.

The moment generating function of $\widehat{\beta}$ is

$$
\begin{aligned}
M_{\widehat{\beta}}(\theta) & =\mathrm{E}\left(\exp \left\{\theta^{\prime}\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)\right\}\right) \\
& =\exp \left(\theta^{\prime} \beta\right) \mathrm{E}\left(\exp \left(\theta^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)\right) .
\end{aligned}
$$

Since the moment generating function of $u \sim N\left(0, \sigma^{2} I_{n}\right)$ is

$$
M_{u}(\theta)=\mathrm{E}\left(\exp \left(\theta^{\prime} u\right)\right)=\exp \left\{\frac{\sigma^{2} \theta^{\prime} \theta}{2}\right\}
$$

we can rewrite

$$
\begin{aligned}
M_{\widehat{\beta}}(\theta) & =\exp \left(\theta^{\prime} \beta\right) M_{u}\left(\theta^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \\
& =\exp \left(\theta^{\prime} \beta\right) \exp \left(\frac{\sigma^{2}}{2} \theta^{\prime}\left(X^{\prime} X\right)^{-1} \theta\right) \\
& =\exp \left(\theta^{\prime} \beta+\frac{\sigma^{2}}{2} \theta^{\prime}\left(X^{\prime} X\right)^{-1} \theta\right),
\end{aligned}
$$

which indicates that $\widehat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$.
1.4 Show that $s^{2}=\frac{1}{n-k}(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})^{\prime}$ is an unbiased estimator of σ^{2}.
Since $\widehat{\beta}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u$, then

$$
\begin{aligned}
y-X \widehat{\beta} & =y-X\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u\right) \\
& =(y-X \beta)-X\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& =\underbrace{\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)}_{\text {idempotent and symmetric }} u
\end{aligned}
$$

Let $M \equiv I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}$, then $M^{2}=M, M^{\prime}=M$. Thus, s^{2} can be rewritten as

$$
s^{2}=\frac{1}{n-k}(M u)^{\prime}(M u)=\frac{1}{n-k} u^{\prime} M M u=\frac{1}{n-k} \underbrace{u^{\prime} M u}_{\text {scalar }} .
$$

Since for scalar $u^{\prime} M u, \operatorname{tr}\left(u^{\prime} M u\right)=u^{\prime} M u$,

$$
\begin{aligned}
\mathrm{E}\left(s^{2}\right) & =\frac{1}{n-k} \mathrm{E}\left[\operatorname{tr}\left(M u u^{\prime}\right)\right] \\
& =\frac{1}{n-k} \operatorname{tr}\left(M \mathrm{E}\left(u u^{\prime}\right)\right) \\
& =\frac{1}{n-k} \sigma^{2}\left(\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)\right) \\
& =\frac{1}{n-k}\left(\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(I_{k}\right)\right) \\
& =\frac{1}{n-k} \sigma^{2}(n-k) \\
& =\sigma^{2}
\end{aligned}
$$

1.5 Show that $\frac{(n-k) s^{2}}{\sigma^{2}}$ is distributed as a χ^{2} random variavble with $n-k$ degrees of freedom.
Since $s^{2}=\frac{1}{n-k} u^{\prime} M u$, under the assumption that $u \sim N\left(0, \sigma^{2} I_{n}\right)$, the distribution of s^{2} denotes

$$
\frac{(n-k) s^{2}}{\sigma^{2}}=\frac{u^{\prime} M u}{\sigma^{2}} \sim \chi^{2}(\operatorname{Rank}(M))
$$

Note that for the idempotent and symmetric matrix $M, \operatorname{Rank}(M)=\operatorname{tr}(M)=n-k$.

1.6 Show that $\hat{\beta}$ is a best linear unbiased estimator.

Consider the alternative linear unbiased estimator $\widetilde{\beta}$ as follows:

$$
\widetilde{\beta}=\underbrace{C}_{k \times n} y=C(X \beta+u)=C X \beta+C u \text {. }
$$

Then

$$
\mathrm{E}(\widetilde{\beta})=C X \beta+C \mathrm{E}(u)=C X \beta
$$

Since $\widetilde{\beta}$ is assumed to be unbiased, $\mathrm{E}(\widetilde{\beta})=\beta$ holds under the condition:

$$
C X=I_{k} .
$$

Then we derive that $V(\widetilde{\beta})=\mathrm{E}(\widetilde{\beta}-\beta)(\widetilde{\beta}-\beta)^{\prime}=\mathrm{E}\left[C u(C u)^{\prime}\right]=\mathrm{E}\left(C u u^{\prime} C^{\prime}\right)=C \mathrm{E}\left(u u^{\prime}\right) C=$ $\sigma^{2} C C^{\prime}$. Defining $C=D+\left(X^{\prime} X\right)^{-1} X^{\prime}, V(\widetilde{\beta})$ can be rewritten as

$$
V(\widetilde{\beta})=\sigma^{2}\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime} .
$$

In addition, because of the unbiasedness of $\widetilde{\beta}, C X=\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right) X=D X+I_{k}=I_{k}$ indicates that $D X=0$. Thus,

$$
V(\widetilde{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1}+\sigma^{2} D D^{\prime}=V(\widehat{\beta})+\sigma^{2} D D^{\prime}
$$

$V(\widetilde{\beta})-V(\widehat{\beta})=\sigma^{2} D D^{\prime}$ is positive semidefinite matrix. $V(\widetilde{\beta}) \geq V(\widehat{\beta})$ holds.
1.7 Show that $\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)}{\sigma^{2}} \sim \chi^{2}(k)$.

$$
\begin{aligned}
(\widehat{\beta}-\beta)^{\prime} X^{\prime} X(\widehat{\beta}-\beta) & =\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)^{\prime} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& =u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u=u^{\prime} \underbrace{X\left(X^{\prime} X\right)^{-1} X^{\prime}}_{\text {idempotent and symmetric }} u
\end{aligned}
$$

with $u \sim N\left(0, \sigma^{2} I_{n}\right)$,

$$
\frac{u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u}{\sigma^{2}} \sim \chi^{2}\left(\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)
$$

Note that $\left.\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)=\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)=\operatorname{tr}\left(I_{k}\right)=k$. Thus the degree of freedom is k.
1.8 Show that $\hat{\beta}$ is independent of $s^{2}=\frac{1}{n-k}(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})$. $\operatorname{Cov}(X, Y)=0 \Longleftrightarrow \operatorname{Cov}(g(X), h(Y))=0$.

$$
s^{2}=\frac{1}{n-k} e^{\prime} e,
$$

We prove the independence of $\widehat{\beta}$ to s^{2} by deriving $\operatorname{Cov}(\widehat{\beta}, e)=0$ because both $\widehat{\beta}$ and e are normal.

$$
\begin{aligned}
\operatorname{Cov}(\widehat{\beta}, e) & =\mathrm{E}\left(e(\widehat{\beta}-\beta)^{\prime}\right)=\mathrm{E}\left(M u\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)^{\prime}\right) \\
& =\mathrm{E}\left(M u u^{\prime} X\left(X^{\prime} X\right)^{-1}\right)=M \mathrm{E}\left(u u^{\prime}\right) X\left(X^{\prime} X\right)^{-1} \\
& =M\left(\sigma^{2} I_{n}\right) X\left(X^{\prime} X\right)^{-1}=\sigma^{2} M X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X\left(X^{\prime} X\right)^{-1}-X\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1}\right. \\
& =\sigma^{2}\left(X\left(X^{\prime} X\right)^{-1}-X\left(X^{\prime} X\right)^{-1}\right) \\
& =0
\end{aligned}
$$

1.9 Show that $\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta) / k}{(y-X \hat{\beta})^{\prime}(y-X \hat{\beta}) /(n-k)} \sim F(k, n-k)$.

We have proven that

$$
\frac{(\widehat{\beta}-\beta)^{\prime} X^{\prime} X(\widehat{\beta}-\beta)}{\sigma^{2}}=\frac{u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u}{\sigma^{2}} \sim \chi^{2}(k)
$$

in question 1.7 and

$$
\frac{(y-X \widehat{\beta})^{\prime}(y-X \widehat{\beta})}{\sigma^{2}} \sim \chi^{2}(n-k)
$$

in question 1.4 and 1.5.
Since we proved that $\widehat{\beta}$ is independent of e, we have

$$
\frac{\frac{(\widehat{\beta}-\beta)^{\prime} X^{\prime} X(\widehat{\beta}-\beta)}{\sigma^{2}} / k}{\frac{(y-X \widehat{\beta})^{\prime}(y-X \widehat{\beta})}{\sigma^{2}} /(n-k)} \sim \mathrm{F}(k, n-k) .
$$

1.10 Show that $\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=y^{\prime}\left(I_{n}-i i^{\prime}\right) y$, where $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{\prime}$ and $i=(1,1, \ldots, 1)^{\prime}$.

First, we can simplify the equation as

$$
\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i} y_{i}\left(y_{i}-\bar{y}\right)-\bar{y} \sum_{i}\left(y_{i}-\bar{y}\right)=\sum_{i} y_{i}\left(y_{i}-\bar{y}\right)=\sum_{i} y_{i}^{2}-\bar{y} \sum_{i} y_{i}
$$

Then each item on the right side can be rewrite as

$$
\begin{gathered}
\sum_{i} y_{i}^{2}=y^{\prime} y \\
\bar{y}=\frac{1}{n} i^{\prime} y=\frac{1}{n} y^{\prime} i \\
\sum_{i} y_{i}=i^{\prime} y
\end{gathered}
$$

Therefore, the above equation is

$$
\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=y^{\prime} y-\frac{1}{n} y^{\prime} i i^{\prime} y=y^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) y
$$

1.11 Show that $I_{n}-\frac{1}{n} i i^{\prime}$ is symmetric and idempotent.

From the definition of symmetric and idempotent matrix, first we can prove that

$$
\left(I_{n}-\frac{1}{n} i i^{\prime}\right)\left(I_{n}-\frac{1}{n} i i^{\prime}\right)=I_{n} I_{n}+\frac{1}{n^{2}} i i^{\prime} i i^{\prime}-2 \frac{1}{n} I_{n} i i^{\prime}=I_{n}-\frac{1}{n} i i^{\prime}
$$

which means that $I_{n}-\frac{1}{n} i i^{\prime}$ is idempotent.
Moreover, $i i^{\prime}$ and I_{n} are $n \times n$ symmetric matrices,

$$
I_{n}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right) \quad i^{\prime} i=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{array}\right)
$$

which can prove that $I_{n}-\frac{1}{n} i i^{\prime}$ are symmetric.

$$
I_{n}-\frac{1}{n} i i^{\prime}=\left(\begin{array}{cccc}
1-\frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} \\
-\frac{1}{n} & 1-\frac{1}{n} & \cdots & -\frac{1}{n} \\
\vdots & \vdots & \ddots & \vdots \\
-\frac{1}{n} & -\frac{1}{n} & \cdots & 1-\frac{1}{n}
\end{array}\right)
$$

2 Question 2

2.1 What is the distribution of $\frac{(X-\mu i)^{\prime}(X-\mu i)}{\sigma^{2}}$?

Rewrite the equation into scalars, we can obtain

$$
\frac{(X-\mu i)^{\prime}(X-\mu i)}{\sigma^{2}}=\sum_{j=1}^{n}\left(\frac{X_{j}-\mu}{\sigma}\right)^{2}
$$

Since $X_{i} \stackrel{\text { iid }}{\sim} N\left(\mu, \sigma^{2}\right), \frac{X_{i}-\mu}{\sigma} \stackrel{\text { iid }}{\sim} N(0,1)$ can be easily obtained.
From the definition of chi-squared distribution, we know that Z^{2} is chi-squared distributed with 1 degree of freedom if Z is of standard normal distribution.

Then, from the additivity of chi-squared distribution, the n random variables indicate that

$$
\sum_{j=1}^{n}\left(\frac{X_{j}-\mu}{\sigma}\right)^{2} \stackrel{\mathrm{iid}}{\sim} \chi^{2}(n)
$$

In conclusion, $\frac{(X-\mu i)^{\prime}(X-\mu i)}{\sigma^{2}}$ are of chi-squared distribution with n degree of freedom.

2.2 Show that $(X-\mu i)^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)(X-\mu i)=\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)$

For the right side, which is similar to 1.10 , the below equation can be easily derived:

$$
\begin{equation*}
\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)=X^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) X \tag{6}
\end{equation*}
$$

As for the left side, it can be expand as

$$
\begin{align*}
& (X-\mu i)^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)(X-\mu i) \\
& =X^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)(X-\mu i)-\mu i^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)(X-\mu i) \tag{7}
\end{align*}
$$

The second term can be simplified as

$$
\mu i^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)(X-\mu i)=\left(\mu i^{\prime}-\frac{1}{n} \mu i^{\prime} i i^{\prime}\right)(X-\mu i)=\left(\mu i^{\prime}-\mu i^{\prime}\right)(X-\mu i)=0
$$

So equation (7) continued to be expanded as

$$
\begin{align*}
& (X-\mu i)^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)(X-\mu i) \\
& =X^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)(X-\mu i) \\
& =X^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) X-X^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) \mu i \tag{8}\\
& =X^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) X
\end{align*}
$$

From equation (6) and equation (8), we can prove that

$$
(X-\mu i)^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)(X-\mu i)=\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)
$$

2.3 Show that $\frac{(X-\mu i)^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)(X-\mu i)}{\sigma^{2}} \sim \chi^{2}(n-1)$.

Similar to 1.5 and 2.1, the distribution is derived as

$$
\frac{(X-\mu i)^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)(X-\mu i)}{\sigma^{2}} \sim \chi^{2}\left(\operatorname{tr}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)\right)
$$

The properties of trace indicates that

$$
\operatorname{tr}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)=\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(\frac{1}{n} i i^{\prime}\right)=n-\operatorname{tr}\left(\frac{1}{n} i^{\prime} i\right)=n-1
$$

Consequently, we can prove that

$$
\frac{(X-\mu i)^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)(X-\mu i)}{\sigma^{2}} \sim \chi^{2}(n-1)
$$

