TA session #8

ZHENG XUZHU Econometrics I

June, 9, 2022

Theorem 1 Chebyshev's inequality.

Let X(integrable) be a random variable with finite expected value μ and finite non-zero variance σ^2 . Then for any real number k > 0,

$$\mathbf{P}(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}, \qquad \mu = \mathbf{E}(X), \sigma^2 = V(X).$$
(1)

Proof. Set $I = \{x : |x - \mu| \ge k\sigma\},\$

$$\sigma^{2} = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx$$

$$\geq \int_{I} (x - \mu)^{2} f(x) dx$$

$$\geq (k\sigma^{2}) \int_{I} f(x) dx$$

$$= (k\sigma^{2}) \cdot \mathbf{P}(|X - \mu| \geq k\sigma).$$

Then, divide both sides by $(k\sigma)^2$ we can get (1).

Theorem 2 Positive Definiteness of a Matrix.

Let n = 1; we say that a square matrix A is symmetric if $A \in \mathbb{R}^{n \times n}$ is equal to its transpose $(A^{\top} = A)$, and we say that A is nonnegative definite (positive semi-definite) if a matrix $B \in \mathbb{R}^{n \times n}$ exists such that $A = B^{\top}B$.

Proposition 1 (nonnegative definite matrix). The following three conditions are equivalent for a symmetric matrix $A \in \mathbb{R}^{n \times n}$.

- 1. A matrix $B \in \mathbb{R}^{n \times n}$ exists such that $A = B^{\top}B$.
- 2. $x^{\top}Ax \ge 0$ for any $x \in \mathbb{R}^n$.
- 3. The eigenvalues¹ of A are nonnegative.

 $\begin{array}{ll} \textit{Proof.} & (a) \Rightarrow (b), \quad A = B^{\top}B \Rightarrow x^{\top}Ax \Rightarrow x^{\top}B^{\top}Bx \Rightarrow \|Bx\|^{2} \geq 0. \\ (b) \Rightarrow (c), \quad x^{\top}Ax \geq 0, x \in \mathbb{R}^{n} \Rightarrow \forall y \in \mathbb{R}^{n}, y^{\top}Ay = y^{\top}\lambda y = \lambda \|y\|^{2} \geq 0 \\ (c) \Rightarrow (a), \qquad \text{since } \lambda_{1}, ..., \lambda_{n} \geq 0 \text{ and} A \text{ is a symmetric matrix } \Rightarrow A = PDP^{\top} = P\sqrt{D}\sqrt{D}P^{\top} = (\sqrt{D}P^{\top})^{\top}\sqrt{D}P^{\top}, \end{array}$

¹An element v is called an eigenvector of A if there exists a number λ such that $Av = \lambda v$, i.e. $(A - \lambda I)v = 0$. If $v \neq 0$ then λ is uniquely determined. In this case, we say that λ is an eigenvalue of A belonging to the eigenvector v. We also say that v is an eigenvector with the eigenvalue λ . Instead of eigenvector and eigenvalue, on also uses the terms characteristic vector and characteristic value.

where
$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
 and $\sqrt{D} = \begin{pmatrix} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_n} \end{pmatrix}$ and P is the corresponding orthogonal matrix².

Lemma 1. Real matrix A is symmetric \iff A is diagonalizable:

$$A = \underbrace{U}_{\text{orthogonal matrix}} \underbrace{D}_{D} U^{-1}$$

Lemma 2. If A is diagonalizable, there exists unitary matrix P such that $P^{-1}AP = D$ where D =Lemma 2. If A is tragonalizable, there exists unitary matrix P such that $P^{-1}AP = D$ where $D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$ and $p = (p_1 & \cdots & p_n)$. Note that $\lambda_1 \cdots \lambda_n$ are eigenvalues and $p_1 \cdots p_n$ are eigen-

vectors with λs

²For real square matrix U, U is orthogonal matrix $\iff U^{\top}U = UU^{\top} = I_n$. This leads to the equivalent characterization: a matrix U is orthogonal if its transpose is equal to its inverse i.e. $U^{\top} = U^{-1}$.