# TA session \#8 

## ZHENG XUZHU

Econometrics I
June, 9, 2022

## Theorem 1 Chebyshev's inequality.

Let $X$ (integrable) be a random variable with finite expected value $\mu$ and finite non-zero variance $\sigma^{2}$. Then for any real number $k>0$,

$$
\begin{equation*}
\mathrm{P}(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}, \quad \mu=\mathrm{E}(X), \sigma^{2}=V(X) \tag{1}
\end{equation*}
$$

Proof. Set $I=\{x:|x-\mu| \geq k \sigma\}$,

$$
\begin{aligned}
\sigma^{2} & =\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x \\
& \geq \int_{I}(x-\mu)^{2} f(x) d x \\
& \geq\left(k \sigma^{2}\right) \int_{I} f(x) d x \\
& =\left(k \sigma^{2}\right) \cdot \mathrm{P}(|X-\mu| \geq k \sigma)
\end{aligned}
$$

Then, divide both sides by $(k \sigma)^{2}$ we can get (1).

## Theorem 2 Positive Definiteness of a Matrix.

Let $n=1$; we say that a square matrix $A$ is symmetric if $A \in \mathbb{R}^{n \times n}$ is equal to its transpose $\left(A^{\top}=A\right)$, and we say that $A$ is nonnegative definite (positive semi-definite) if a matrix $B \in \mathbb{R}^{n \times n}$ exists such that $A=B^{\top} B$.

Proposition 1 (nonnegative definite matrix). The following three conditions are equivalent for a symmetric matrix $A \in \mathbb{R}^{n \times n}$.

1. A matrix $B \in \mathbb{R}^{n \times n}$ exists such that $A=B^{\top} B$.
2. $x^{\top} A x \geq 0$ for any $x \in \mathbb{R}^{n}$.
3. The eigenvalues ${ }^{1}$ of $A$ are nonnegative.

Proof. $(a) \Rightarrow(b), \quad A=B^{\top} B \Rightarrow x^{\top} A x \Rightarrow x^{\top} B^{\top} B x \Rightarrow\|B x\|^{2} \geq 0$.
$(b) \Rightarrow(c), \quad x^{\top} A x \geq 0, x \in \mathbb{R}^{n} \Rightarrow \forall y \in \mathbb{R}^{n}, y^{\top} A y=y^{\top} \lambda y=\lambda\|y\|^{2} \geq 0$
$(c) \Rightarrow(a), \quad$ since $\lambda_{1}, \ldots, \lambda_{n} \geq 0$ and $A$ is a symmetric matrix $\Rightarrow A=P D P^{\top}=P \sqrt{D} \sqrt{D} P^{\top}=\left(\sqrt{D} P^{\top}\right)^{\top} \sqrt{D} P^{\top}$,

[^0]where $D=\left(\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right)$ and $\sqrt{D}=\left(\begin{array}{ccc}\sqrt{\lambda_{1}} & & \\ & \ddots & \\ & & \sqrt{\lambda_{n}}\end{array}\right)$ and $P$ is the corresponding orthogonal matrix $2^{2}$

Lemma 1. Real matrix $A$ is symmetric $\Longleftrightarrow \mathrm{A}$ is diagonalizable:

$$
A=\underbrace{U}_{\text {orthogonal matrix }} \overbrace{D}^{\text {diagonal matrix }} U^{-1}
$$

Lemma 2. If $A$ is diagonalizable, there exists unitary matrix $P$ such that $P^{-1} A P=D$ where $D=$ $\left(\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right)$ and $p=\left(\begin{array}{lll}p_{1} & \cdots & p_{n}\end{array}\right)$. Note that $\lambda_{1} \cdots \lambda_{n}$ are eigenvalues and $p_{1} \cdots p_{n}$ are eigenvectors with $\lambda \mathrm{s}$.

[^1]
[^0]:    ${ }^{1}$ An element $v$ is called an eigenvector of $A$ if there exists a number $\lambda$ such that $A v=\lambda v$, i.e. $(A-\lambda \mathrm{I}) v=0$. If $v \neq 0$ then $\lambda$ is uniquely determined. In this case, we say that $\lambda$ is an eigenvalue of $A$ belonging to the eigenvector $v$. We also say that $v$ is an eigenvector with the eigenvalue $\lambda$. Instead of eigenvector and eigenvalue, on also usesthe terms characteristic vector and characteristic value.

[^1]:    ${ }^{2}$ For real square matrix $U, U$ is orthogonal matrix $\Longleftrightarrow U^{\top} U=U U^{\top}=I_{n}$. This leads to the equivalent characterization: a matrix $U$ is orthogonal if its transpose is equal to its inverse i.e. $U^{\top}=U^{-1}$.

