Econometrics I TA Session

Wang Xin*

April 14, 2022

Contents

1 Terminology 1
2 Algebraic Manipulation of Matrices 3
2.1 Equality of Matrices 3
2.2 Transposition 3
2.3 Addition 3
2.4 Multiplication 4
3 Some Definitions about Matrices 5
3.1 Inverse Matrix 5
3.2 Rank 5
3.3 Trace 5
4 Differentiation of Matrices 6
5 Assumptions of the Linear Regression Model 7

1 Terminology

Suppose that there is a simple regression model

$$
y_{i}=x_{i} \beta+u_{i},
$$

where $\mathrm{i}=1,2,3, \ldots, \mathrm{n}, y_{i}$ and x_{i} are observations.
When we arrange those observations like

$$
\begin{gathered}
y_{1}=x_{1} \beta+u_{1} \\
y_{2}=x_{2} \beta+u_{2} \\
\ldots \\
y_{n}=x_{n} \beta+u_{n},
\end{gathered}
$$

[^0]we can use vectors to rewrite the above equations into one:
\[

$$
\begin{equation*}
\mathbf{y}=\mathbf{x} \beta+\mathbf{u} \tag{1}
\end{equation*}
$$

\]

where $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{\prime}, \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\prime}, \mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{\prime}$ are vectors.
A vector is an ordered set of numbers arranged either in a row or a column. In view of the preceding, a row vector is also a matrix with one row, whereas a column vector is a matrix with one column.

Similarly, for a multiple regression model

$$
y_{i}=x_{i 1} \beta_{1}+x_{i 2} \beta_{2}+x_{i 3} \beta_{3}+\ldots+x_{i k} \beta_{k}+u_{i}
$$

where y_{i} and $x_{i j}$ are observations and $i=1,2,3, \ldots, n, j=1,2,3, \ldots, k$, we arrange them in a series

$$
\begin{gathered}
y_{1}=x_{11} \beta_{1}+x_{12} \beta_{2}+x_{13} \beta_{3}+\ldots+x_{1 k} \beta_{k}+u_{1} \\
y_{2}=x_{21} \beta_{1}+x_{22} \beta_{2}+x_{23} \beta_{3}+\ldots+x_{2 k} \beta_{k}+u_{2} \\
\ldots \\
y_{n}=x_{n 1} \beta_{1}+x_{n 2} \beta_{2}+x_{n 3} \beta_{3}+\ldots+x_{n k} \beta_{k}+u_{n} .
\end{gathered}
$$

Then we extract x and β from right side

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\ldots \\
y_{n}
\end{array}\right)=\left(\begin{array}{ccccc}
x_{11} & x_{12} & x_{13} & \ldots & x_{1 k} \\
x_{21} & x_{22} & x_{23} & \ldots & x_{2 k} \\
x_{31} & x_{32} & x_{33} & \ldots & x_{3 k} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
x_{n 1} & x_{n 2} & x_{n 3} & \ldots & x_{n k}
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\ldots \\
\beta_{k}
\end{array}\right)+\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\ldots \\
u_{n}
\end{array}\right)
$$

so x can be compacted into a matrix

$$
\begin{equation*}
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u} \tag{2}
\end{equation*}
$$

A matrix can also be viewed as a set of column vectors or as a set of row vectors. The dimensions of a matrix are the numbers of rows and columns it contains. " X is an $\mathrm{n} \times \mathrm{K}$ matrix" will always mean that \mathbf{X} has n rows and K columns. If n equals K , then X is a square matrix.

- A symmetric matrix is one in which $x_{i j}=x_{j i}$ for all i and j .
- A diagonal matrix is a square matrix whose only nonzero elements appear on the main diagonal, that is, moving from upper left to lower right.
- An identity matrix is a scalar matrix with ones on the diagonal. This matrix is always denoted as \mathbf{I}. A subscript is sometimes included to indicate its size, or order. For example, \mathbf{I}_{4} indicates a 4×4 identity matrix.

2 Algebraic Manipulation of Matrices

2.1 Equality of Matrices

Matrices (or vectors) \mathbf{A} and \mathbf{B} are equal if and only if they have the same dimensions and each element of \mathbf{A} equals the corresponding element of \mathbf{B}. That is, $\mathbf{A}=\mathbf{B}$ if and only if $a_{i k}=b_{i k}$ for all i and k.

2.2 Transposition

The transpose of a matrix \mathbf{A}, denoted \mathbf{A}^{\prime}, is obtained by creating the matrix whose $k_{t h}$ row is the $k_{t h}$ column of the original matrix. Thus, if $\mathbf{B}=\mathbf{A}^{\prime}$, then each column of \mathbf{A} will appear as the corresponding row of \mathbf{B}. If \mathbf{A} is $\mathrm{n} \times \mathrm{K}$, then \mathbf{A}^{\prime} is $\mathrm{K} \times \mathrm{n}$.

An equivalent definition of the transpose of a matrix is $\mathbf{B}=\mathbf{A}^{\prime} \Longleftrightarrow b_{i k}=a_{k i}$ for all i and k . The definition of a symmetric matrix implies that

$$
\text { if (and only if) } \mathbf{A} \text { is symmetric, then } \mathbf{A}=\mathbf{A}^{\prime} \text {. }
$$

It also follows from the definition that for any \mathbf{A},

$$
\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A} .
$$

Finally, the transpose of a column vector, a, is a row vector:

$$
\mathbf{a}^{\prime}=\left(a_{1} a_{2} \ldots \ldots a_{n}\right)
$$

2.3 Addition

The operations of addition and subtraction are extended to matrices by defining

$$
\begin{gather*}
\mathbf{C}=\mathbf{A}+\mathbf{B}=\left[a_{i k}+b_{i k}\right] \tag{3}\\
\mathbf{A}-\mathbf{B}=\left[a_{i k}-b_{i k}\right]
\end{gather*}
$$

Matrices cannot be added unless they have the same dimensions, in which case they are said to be conformable for addition. A zero matrix or null matrix is one whose elements are all zero. It follows from (3) that matrix addition is commutative,

$$
\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}
$$

and associative,

$$
(\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C})
$$

and that

$$
(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{A}^{\prime}+\mathbf{B}^{\prime}
$$

2.4 Multiplication

Matrices are multiplied by using the inner product. The inner product, or dot product, of two vectors, \mathbf{a} and \mathbf{b}, is a scalar and is written

$$
\begin{equation*}
\mathbf{a}^{\prime} \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}++a_{n} b_{n} . \tag{4}
\end{equation*}
$$

Note that the inner product is written as the transpose of vector a times vector \mathbf{b}, a row vector times a column vector. In (A-12), each term $a_{j} b_{j}$ equals $b_{j} a_{j}$; hence

$$
\mathbf{a}^{\prime} \mathbf{b}=\mathbf{b}^{\prime} \mathbf{a} .
$$

For an $\mathrm{n} \times \mathrm{K}$ matrix \mathbf{A} and a $\mathrm{K} \times \mathrm{M}$ matrix \mathbf{B}, the product matrix, $\mathbf{C}=\mathbf{A B}$, is an $\mathrm{n} \times \mathrm{M}$ matrix whose $i k_{t h}$ element is the inner product of row i of \mathbf{A} and column k of B. Thus, the product matrix \mathbf{C} is

$$
\mathbf{C}=\mathbf{A B} \Rightarrow c_{i k}=\mathbf{a}_{\mathbf{i}}^{\prime} \mathbf{b}_{\mathbf{k}} .
$$

To multiply two matrices, the number of columns in the first must be the same as the number of rows in the second, in which case they are conformable for multiplication.

Scalar multiplication of a matrix is the operation of multiplying every element of the matrix by a given scalar. For scalar c and matrix A,

$$
c \mathbf{A}=\left[c a_{i k}\right] .
$$

The product of a matrix and a vector is written

$$
\mathbf{c}=\mathbf{A} \mathbf{b}
$$

the number of elements in \mathbf{b} must equal the number of columns in \mathbf{A}; the result is a vector with number of elements equal to the number of rows in \mathbf{A}.

The product of a matrix and a vector is a linear combination of the columns of the matrix where the coefficients are the elements of the vector. For the general case,

$$
\begin{equation*}
\mathbf{c}=\mathbf{A} \mathbf{b}=b_{1} \mathbf{a}_{\mathbf{1}}+b_{2} \mathbf{a}_{\mathbf{2}}+\ldots+b_{k} \mathbf{a}_{\mathbf{k}} \tag{5}
\end{equation*}
$$

In the calculation of a matrix product $\mathbf{C}=\mathbf{A B}$, each column of \mathbf{C} is a linear combination of the columns of \mathbf{A}, where the coefficients are the elements in the corresponding column of \mathbf{B}. That is,

$$
\mathrm{C}=\mathrm{AB} \Longleftrightarrow \mathrm{c}_{\mathrm{k}}=\mathrm{A} \mathrm{~b}_{\mathrm{k}} .
$$

- Associative law: $(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})$
- Distributive law: $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$
- Transpose of a product: $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$
- Transpose of an extended product: $(\mathbf{A B C})^{\prime}=\mathbf{C}^{\prime} \mathbf{B}^{\prime} \mathbf{A}^{\prime}$

3 Some Definitions about Matrices

3.1 Inverse Matrix

Let matrix \mathbf{X} and \mathbf{Y} be $\mathrm{n} \times \mathrm{n}$ matrices. If

$$
\begin{equation*}
\mathbf{X Y}=\mathbf{Y X}=\mathbf{I}_{\mathbf{n}} \tag{6}
\end{equation*}
$$

then matrix \mathbf{Y} is a inverse matrix of \mathbf{X}, which can be written as

$$
\mathbf{Y}=\mathbf{X}^{-1}
$$

Matrix \mathbf{X} has inverse matrix if and only if the determinant of \mathbf{X} is not 0 .
Moreover if \mathbf{X} has inverse matrix, then it is called to be regular.
If \mathbf{A} and \mathbf{B} are regular matrices, $\mathbf{A B}$ and $(\mathbf{A B})^{-1}$ are regular matrices and $\mathbf{B}^{-\mathbf{1}} \mathbf{A}^{\mathbf{- 1}}$ is equal to $(\mathbf{A B})^{-1}$

3.2 Rank

The rank of \mathbf{X} is the maximum number of linearly independent column (or row) vectors of \mathbf{X}, which is denoted by $\operatorname{rank}(\mathbf{X})$.

For example, $\operatorname{rank}(A)=$?

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{cccc}
1 & -1 & -3 & 1 \\
1 & -1 & 2 & -1 \\
4 & -4 & 3 & -2 \\
2 & -2 & -11 & 4
\end{array}\right) \quad \mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \quad \mathbf{y}=\left(\begin{array}{c}
1 \\
3 \\
10 \\
0
\end{array}\right) \\
\mathbf{y}=\mathbf{A} \mathbf{x} \Rightarrow\left\{\begin{array}{l}
1=x_{1}-x_{2}-3 x_{3}+x_{4} \\
3=x_{1}-x_{2}+2 x_{3}-x_{4} \\
10=4 x_{1}-4 x_{2}+3 x_{3}-2 x_{4} \\
0=2 x_{1}-2 x_{2}-11 x_{3}+4 x_{4}
\end{array}\right. \\
\left\{\begin{array}{l}
1=x_{1}-x_{2}-3 x_{3}+x_{4} \\
2=5 x_{3}-2 x_{4} \\
6=15 x_{3}-6 x_{4} \\
-2=-5 x_{3}+2 x_{4}
\end{array}\right.
\end{gathered}
$$

3.3 Trace

The trace of a square $\mathrm{K} \times \mathrm{K}$ matrix \mathbf{A} is the sum of its diagonal elements:

$$
\begin{equation*}
\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{k} a_{i i} \tag{7}
\end{equation*}
$$

Some easily proven results are

$$
\operatorname{tr}(c \mathbf{A})=c(\operatorname{tr}(\mathbf{A}))
$$

$$
\begin{gathered}
\operatorname{tr}\left(\mathbf{A}^{\prime}\right)=\operatorname{tr}(\mathbf{A}) \\
\operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B}) \\
\operatorname{tr}\left(\mathbf{I}_{k}\right)=\mathbf{K} \\
\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A}) \\
\mathbf{a}^{\prime} \mathbf{a}=\operatorname{tr}\left(\mathbf{a}^{\prime} \mathbf{a}\right)=\operatorname{tr}\left(\mathbf{a a}^{\prime}\right) \\
\operatorname{tr}\left(\mathbf{A}^{\prime} \mathbf{A}\right)=\sum_{k=1}^{K} \mathbf{a}^{\prime}{ }_{k} \mathbf{a}_{k}=\sum_{i=1}^{K} \sum_{k=1}^{K} a_{i k}^{2}
\end{gathered}
$$

The permutation rule can be extended to any cyclic permutation in a product:

$$
\operatorname{tr}(\mathbf{A B C D})=\operatorname{tr}(\mathbf{B C D A})=\operatorname{tr}(\mathbf{C D A B})=\operatorname{tr}(\mathbf{D A B C})
$$

4 Differentiation of Matrices

A linear function can be written

$$
\mathbf{y}=\mathbf{a}^{\prime} \mathbf{x}=\mathbf{x}^{\prime} \mathbf{a}=\sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{x}_{i}
$$

so

$$
\begin{equation*}
\frac{\partial \mathbf{a}^{\prime} \mathbf{x}}{\partial \mathbf{x}}=\frac{\partial \mathbf{x}^{\prime} \mathbf{a}}{\partial \mathbf{x}}=\mathbf{a} \tag{8}
\end{equation*}
$$

Note, in particular, that $\frac{\partial \mathbf{a}^{\prime} \mathbf{x}}{\partial \mathbf{x}}=\mathbf{a}$, not \mathbf{a}^{\prime}.

$$
\frac{\partial \mathbf{a}^{\prime} \mathbf{x}}{\partial \mathbf{x}}=\left(\begin{array}{c}
\frac{\partial x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}}{\partial x_{1}} \\
\frac{\partial x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}}{\partial x_{2}} \\
\ldots \\
\frac{\partial x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}}{\partial x_{n}}
\end{array}\right)=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\ldots \\
a_{n}
\end{array}\right)=\mathbf{a}
$$

Similarly, for a matrix $\mathbf{A}, \mathbf{A}=\left(\mathbf{a}_{1}^{\prime} \mathbf{a}^{\prime}{ }_{2} \ldots \mathbf{a}_{n}{ }_{n}\right)^{\prime}$,

$$
\frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}^{\prime}}=\left(\begin{array}{c}
\frac{\partial \mathbf{a}^{\prime}{ }_{1} \mathbf{x}}{\partial \mathbf{x}^{\prime}} \\
\frac{\partial \mathbf{a}_{2} \mathbf{x}}{\partial \mathbf{x}^{\prime}} \\
\cdots \\
\frac{\partial \mathbf{a}_{n}^{\prime} \mathbf{x}}{\partial \mathbf{x}^{\prime}}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{a}_{1}{ }_{1} \\
\mathbf{a}_{2} \\
\ldots \\
\mathbf{a}_{n}^{\prime}
\end{array}\right)=\mathbf{A}
$$

Further, a quadratic form is

$$
\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} a_{i j}
$$

For example, $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \mathbf{x}=\binom{x_{1}}{x_{2}}$.

$$
\begin{aligned}
\frac{\partial \mathbf{x}^{\prime} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} & =\binom{\frac{\partial\left(a x_{1}^{2}+b x_{1} x_{2}+c x_{1} x_{2}+d x_{2}^{2}\right)}{\partial x_{1}}}{\frac{\partial\left(a x_{1}^{2}+b x_{1} x_{2}+c x_{1} x_{2}+d x_{2}^{2}\right)}{\partial x_{2}}} \\
& =\binom{2 a x_{1}+b x_{2}+c x_{2}}{b x_{1}+c x_{1}+2 d x_{2}} \\
& =\left(\begin{array}{cc}
2 a & b+c \\
b+c & 2 d
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& =\left(\mathbf{A}+\mathbf{A}^{\prime}\right) \mathbf{x}
\end{aligned}
$$

when A is a symmetric matrix, $\frac{\partial \mathbf{x}^{\prime} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}}=2 \mathbf{A} \mathbf{x}$

5 Assumptions of the Linear Regression Model

1. Linearity: $\mathbf{y}=\mathbf{x} \beta+\mathbf{u}$. The model specifies a linear relationship between \mathbf{y} and x .
2. Nonstochasticity and Full Rank: The independent variables are observable and not stochastic. Moreover, there is no exact linear relationship among any of the independent variables in the model.
3. Exogeneity of the independent variables: $E\left[u_{i} \mid x_{i 1}, x_{i 2}, \ldots, x_{i k}\right]=0$. This states that the expected value of the disturbance at observation i in the sample is not a function of the independent variables observed at any observation, including this one. This means that the independent variables will not carry useful information for prediction of u_{i}.
4. Homoscedasticity and nonautocorrelation: $\operatorname{Var}\left(u_{i}^{2}\right)=\sigma^{2}<\infty$ for all i and $\operatorname{Cov}\left(u_{i}, u_{j}\right)=0, \forall i \neq j$. Each disturbance, u_{i} has the same finite variance, σ^{2}, and is uncorrelated with every other disturbance, u_{j}. This assumption limits the generality of the model, and we will want to examine how to relax it in the chapters to follow.
5. Normal distribution: The disturbances are normally distributed. Once again, this is a convenience that we will dispense with after some analysis of its implications.

[^0]: *If you have any questions, please notice us on the class or contact us by e-mail: wx1184097947@yahoo.com (Wang Xin)/ zhengxuzhu_u@yahoo.co.jp (Zheng Xuzhu)

