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1 Introduction to Hypothesis Testing

We begin the analysis with the regression model as a statement of a proposition

y = Xβ + u

Assuming that it satisfies the classical linear model (CLM) assumptions.We know that
OLS produces unbiased estimators of β.

In the first few lessons, we mainly studied how to derive estimates of β and some
properties of them. That is only one step when we carry a research, called ’fitting’.
However, a relevant empirical question is whether the equation specified appears to be
consistent with the data, that is, y. Therefore, the estimates of β need to be examined.
The “test” at this point, is whether β̂ in the least squares regression is zero or not.

In most application, our primary interest lies in testing the null hypothesis against
the alternative hypothesis

H0 : β = 0 versus H1 : β ̸= 0

The hypothesis H0 is referred to as the null hypothesis, while H1 is referred to as the
alternative hypothesis. Often the null hypothesis represents no change or no difference
from the past, while the alternative represents change or difference. The alternative is
often referred to as the research worker’s hypothesis.
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2 Testing Hypotheses about a Single Population Pa-

rameter: The t Test

2.1 A deduction of ’t statistic’

Suppose that
y = β0 + β1x1 + β2x2 + · · ·+ βkxk + u (1)

In this section, we study how to test hypotheses about a particular βj. The null hypoth-
esis is

H0 : βj = 0 (2)

For a full understanding of hypothesis testing, one must remember that the βj are
unknown features of the population, and we will never know them with certainty. Nev-
ertheless, we can hypothesize about the value of βj and then use statistical inference to
test our hypothesis.

It is important to understand what (2) means and to be able to describe this hypoth-
esis in simple language for a particular application. Since βj measures the partial effect
of xj on (the expected value of) y, after controlling for all other independent variables,
(2) means that, once x1, x2, · · · , xj−1, xj+1, · · · , xk have been accounted for, xj has no
effect on the expected value of y. We cannot state the null hypothesis as “xj does have
a partial effect on y” because this is true for any value of βj other than zero. Classical
testing is suited for testing simple hypotheses like (2).

In order to carry hypotheses tests, we need to construct t-distribution for the stan-
dardized estimators:

From the Central Limit Theorem, we know that

β̂j − βj

σ/
√
n

∼ N(0, 1)

Moreover, the estimator of σ2, s2, has been proved to be unbiased. Since u is under
normality assumption and I−X(X′X)−1X′ is symmetric and idempotent,

s2 =
1

n− k − 1
û′û =

1

n− k − 1
u′(I−X(X′X)−1X′)u

(n− k − 1)s2

σ2
∼ χ2(n− k − 1) (3)

(n− k − 1)s2

σ2
is of χ2 distributed.

From the definition of t-distribution, if the constant σ in std(β̂j) = σ/
√
n has been

replaced with the random variable s2, a new estimator can be:

β̂j − βj

σ/
√
n√

(n− k − 1)s2

σ2
/(n− k − 1)

=
β̂j − βj

s/
√
n

=
β̂j − βj

se(β̂j)
∼ t(n− k − 1) (4)
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The statistic we use to test (2) (against any alternative) is called “the” t statistic or
“the” t ratio of βj and is defined as

tβ̂j
≡ β̂j − βj

se(β̂j)
(5)

where βj is 0 under (2).
To determine a rule for rejecting H0, we need to decide on the relevant alternative

hypothesis. For example
H1 : βj ̸= 0

We must first decide on a significance level (“level” for short) or the probability of
rejecting H0 when it is in fact true. For concreteness, suppose we have decided on a 5%
significance level, as this is the most popular choice. Thus, we are willing to mistakenly
reject H0 when it is true 5% of the time. Now, while tβ̂j

has a t distribution under H0.

The definition of “sufficiently large,” with a 5% significance level, which means 2.5%
in each tail, is the 97.5th percentile in a t-distribution with n−k−1 degrees of freedom;
denote this by c. In other words, the rejection ruleis that H0 is rejected in favor of H1

at the 5% significance level if
|tβ̂j

| > c (6)

2.2 A Simple Example

Consider to estimate a model explaining college GPA,

colGPA = β0 + β1hsGPA+ β2ACT + β3skipped+ u

The variables above include the college grade point average (colGPA), high school GPA
(hsGPA), achievement test score (ACT ), and the average number of lectures missed
per week (skipped) for a sample of 141 students from a large university.

Using statistic software, the parameters can be estimated

̂colGPA = 1.39 + 0.412hsGPA+ 0.015ACT − 0.083skipped

(0.33) (0.094) (0.011) (0.026)

n = 141, R2 = 0.234

We can easily compute t statistics to see which variables are statistically significant,
using a two-sided alternative in each case. The 5% critical value is about 1.96, since
the degrees of freedom (141 − 4 = 137) is large enough to use the standard normal
approximation. The 1% critical value is about 2.58.

The t statistic on hsGPA is 4.38, which is significant at very small significance levels.
Thus, we say that “hsGPA is statistically significant at any conventional significance
level.” The t statistic on ACT is 1.36, which is not statistically significant at the 10%
level against a two-sided alternative. The coefficient on ACT is also practically small: a
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10-point increase in ACT , which is large, is predicted to increase colGPA by only 0.15
points. Thus, the variable ACT is practically, as well as statistically, insignificant.

The coefficient on skipped has a t statistic of −0.083/0.026 = −3.19, so skipped is
statistically significant at the 1% significance level (3.19 > 2.58). This coefficient means
that another lecture missed per week lowers predicted colGPA by about 0.083. Thus,
holding hsGPA and ACT fixed, the predicted difference in colGPA between a student
who misses no lectures per week and a student who misses five lectures per week is
about 0.42. Remember that this says nothing about specific students; rather, 0.42 is the
estimated average across a subpopulation of students.

In this example, for each variable in the model, we could argue that a one-sided
alternative is appropriate. The variables hsGPA and skipped are very significant using
a two-tailed test and have the signs that we expect, so there is no reason to do a one-tailed
test. On the other hand, against a one-sided alternative (β3 > 0), ACT is significant at
the 10% level but not at the 5% level. This does not change the fact that the coefficient
on ACT is pretty small.

3 Testing Multiple Linear Restrictions: The F Test

Still, we begin with the regression model (1).
Using t statistic, we have just tested hypotheses involving a single restriction. Fre-

quently, we wish to test multiple hypotheses about the underlying parameters β0, β1, · · · , βk.
In terms of the parameters of the model, the null hypothesis is stated as

H0 : β3 = β4 = · · · = βk = 0 (7)

if (7) is true, then x3, x4, · · · , xk have no effect on y after x1 and x2 have been controlled
for and therefore should be excluded from the model.

Then the appropriate alternative is simply

H1 : H0 is not true.

The alternative holds if at least one of β3, β4 or βk is different from zero. (Any or all
could be different from zero.)

It is tempting to test (7) by using the t statistics on the variables x3, x4, · · · , xk to
determine whether each variable is individually significant. This option is not appro-
priate. A particular t statistic tests a hypothesis that puts no restrictions on the other
parameters. Besides, we would have three outcomes to contend with—one for each t
statistic. Furthermore, using separate t statistics to test a multiple hypothesis like (7)
can be very misleading. We need a way to test the exclusion restrictions jointly.

For convenience, H0 can be rewrited as

Rβ = r (8)
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where β = (β0, β1, · · · , βk)
′ , R =


0, 0, 0, 1, 0, 0, · · · , 0
0, 0, 0, 0, 1, 0, · · · , 0

. . .

0, 0, 0, 0, 0, 0, · · · , 1

 is a (k− 2)× (k+1) matrix,

and r = (0, 0, · · · , 0)′ is a (k − 2)× 1 vector, according to (7).
At last few lessons, we have shown that

β̂ ∼ N(β, σ2(X′X)−1)

Hence we can derive that

Rβ̂ ∼ N(Rβ, σ2R(X′X)−1R′)

After normalizing Rβ̂ and taking its square, we can find

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)

σ2
∼ χ2(G),

and rank(R) = G.
According to the definition of F-distribution and equation (3), we can also replace σ

with s2

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)

σ2
/G

(n− k − 1)s2

σ2
/(n− k − 1)

∼ F (G, n− k − 1)

which can be rewritten as

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)/G

û′û/(n− k − 1)
∼ F (G, n− k − 1) (9)
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