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1 Simplifing the F Test

As mentioned before, the null hypothesis can be shown as H0 : Rβ = r.
Under this restriction, we can rewrite the question as

min
β

(y −Xβ)′(y −Xβ)

s.t. Rβ = r

We denote the optimal solution of the above equation as β̃,

β̃ = β̂ + (X′X)−1R′(R(X′X)−1R′)−1(r−Rβ̂)

ũ = y −Xβ̃

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r) = ũ′ũ− e′e

Moreover, the coefficient of determination of the restricted model and unrestricted
model are

R̃2 = 1− ũ′ũ

y′My
R̂2 = 1− e′e

y′My

Therefore, the F statistics could be simplified,

ũ′ũ− e′e/G

e′e/(n− k)
=

(R̂2 − R̃2)/G

(1− R̂2)/(n− k)
∼ F (G, n− k) (1)

where M = In − 1
n
ii′ and i = (1, 1, · · · , 1)′.

1



2 A Simple Example

We consider the following model that explains major league baseball players’ salaries:

log(salary) = β0 + β1years+ β2gamesyr + β3bavg
+β4hrunsyr + β5rbisyr + u

(2)

where salary is the 1993 total salary, years is years in the league, gamesyr is average
games played per year, bavg is career batting average (for example, bavg 5 250), hrunsyr
is home runs per year, and rbisyr is runs batted in per year.

Suppose we want to test the null hypothesis that, once years in the league and
games per year have been controlled for, the statistics measuring performance—bavg,
hrunsyr, and rbisyr—have no effect on salary. Essentially, the null hypothesis states
that productivity as measured by baseball statistics has no effect on salary.

In terms of the parameters of the model, the null hypothesis is stated as

H0 : β3 = 0, β4 = 0, β5 = 0

From the data gathered from researchers, the model can be estimated as,

̂log(salary) = 11.9 + 0.689years+ 0.126gamesyr + 0.00098bavg

(0.29) (0.0121) (0.0026) (0.00110)

+ 0.0144hrunsyr + 0.0108rbisyr

(0.0161) (0.0072)

n = 353, SSR = 183.186, R2 = 0.6278,

(3)

where SSR is the sum of squared residuals, which is e′e in equation (1).
Knowing the sum of squared residuals in (2) tells us nothing about the truth of

the null hypothesis. However, the factor that will tell us something is how much the
SSR increases when we drop the variables bavg, hrunsyr, and rbisyr from the model.
Remember that, because the OLS estimates are chosen to minimize the sum of squared
residuals, the SSR always increases when variables are dropped from the model; this is
an algebraic fact. The question is whether this increase is large enough, relative to the
SSR in the model with all of the variables, to warrant rejecting the null hypothesis.

The model without the three variables in question is simply

log(salary) = β0 + β1years+ β2gamesyr (4)

In the context of hypothesis testing, equation (4) is the restricted model for testing
H0; model (2) is called the unrestricted model. When we estimate the restricted model,
we obtain ̂log(salary) = 11.22 + 0.0713years+ 0.0202gamesyr

(0.11) (0.0121) (0.0013)

n = 353, SSR = 198.311, R2 = 0.5971,

(5)
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We now can easily compute (SSRr − SSRur)/SSRur and to multiply the result by
(n − k)/G; the reason the formula is stated as in (1) is that it makes it easier to keep
the numerator and denominator degrees of freedom straight. Using the SSRs in (3) and
(5), we have

F =
(198.311− 183.186)

183.186
· 347

3
≈ 9.55. (6)

This number is well above the 1% critical value in the F distribution with 3 and 347
degrees of freedom, and so we soundly reject the hypothesis that bavg, hrunsyr, and
rbisyr have no effect on salary.

3 Relationship between F and t Statistics

Come back to equation (3), it reveals that, whereas years and gamesyr are statistically
significant, none of the variables bavg, hrunsyr, and rbisyr has a statistically significant
t statistic against a two-sided alternative, at the 5% significance level. (The t statistic
on rbisyr is the closest to being significant; its two-sided p-value is 0.134.) Thus, based
on the three t statistics, it appears that we cannot reject H0.

This conclusion turns out to be wrong. The outcome of the joint test may seem
surprising in light of the insignificant t statistics for the three variables. What is hap-
pening is that the two variables hrunsyr and rbisyr are highly correlated, and this
multicollinearity makes it difficult to uncover the partial effect of each variable; this is
reflected in the individual t statistics. The F statistic tests whether these variables (in-
cluding bavg) are jointly significant, and multicollinearity between hrunsyr and rbisyr
is much less relevant for testing this hypothesis.

The F statistic is often useful for testing exclusion of a group of variables when the
variables in the group are highly correlated. For example, suppose we want to test
whether firm performance affects the salaries of chief executive officers. There are many
ways to measure firm performance, and it probably would not be clear ahead of time
which measures would be most important. Since measures of firm performance are likely
to be highly correlated, hoping to find individually significant measures might be asking
too much due to multicollinearity. But an F test can be used to determine whether, as
a group, the firm performance variables affect salary.

In this example regressions, two (or more) variables that each have insignificant t
statistics can be jointly very significant. It is also possible that, in a group of several
explanatory variables, one variable has a significant t statistic but the group of variables
is jointly insignificant at the usual significance levels. What should we make of this kind
of outcome? For concreteness, suppose that in a model with many explanatory variables
we cannot reject the null hypothesis that β1, β2, β3, β4, and β5 are all equal to zero
at the 5% level, yet the t statistic for β̂1 is significant at the 5% level. Logically, we
cannot have β1 ̸= 0 but also have β1, β2, β3, β4, and β5 all equal to zero! But as a
matter of testing, it is possible that we can group a bunch of insignificant variables with
a significant variable and conclude that the entire set of variables is jointly insignificant.
(Such possible conflicts between a t test and a joint F test give an example of why we
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should not “accept” null hypotheses; we should only fail to reject them.) The F statistic
is intended to detect whether a set of coefficients is different from zero, but it is never
the best test for determining whether a single coefficient is different from zero. The t
test is best suited for testing a single hypothesis. (In statistical terms, an F statistic
for joint restrictions including β1 = 0 will have less power for detecting β1 ̸= 0 than the
usual t statistic. )

Unfortunately, the fact that we can sometimes hide a statistically significant vari-
able along with some insignificant variables could lead to abuse if regression results are
not carefully reported. For example, suppose that, in a study of the determinants of
loan-acceptance rates at the city level, x1 is the fraction of black households in the city.
Suppose that the variables x2, x3, x4, and x5 are the fractions of households headed
by different age groups. In explaining loan rates, we would include measures of in-
come, wealth, credit ratings, and so on. Suppose that age of household head has no
effect on loan approval rates, once other variables are controlled for. Even if race has
a marginally significant effect, it is possible that the race and age variables could be
jointly insignificant. Someone wanting to conclude that race is not a factor could simply
report something like “Race and age variables were added to the equation, but they were
jointly insignificant at the 5% level.”
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