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1 Testing for Heteroskedasticity

As usual, we start with the linear model

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + u (1)

where other assumptions are maintained here. In particular, we assume that E(u|x1, x2,
· · · , xk) = 0, so that OLS is unbiased and consistent.

We take the null hypothesis to be that homoskedasticity assumption is true:

H0 : V (u|x1, x2, · · · , xk) = σ2

If we cannot reject H0 at a sufficiently small significance level, we usually conclude that
heteroskedasticity is not a problem. However, remember that we never accept H0; we
simply fail to reject it.

Because we are assuming that the error term u has a zero conditional expectation,
V (u|x) = E(u2|x), and so the null hypothesis of homoskedasticity is equivalent to

H0 : E(u2|x1, x2, · · · , xk) = E(u2) = σ2

This shows that, in order to test for violation of the homoskedasticity assumption, we
want to test whether u2 is related (in expected value) to one or more of the explanatory
variables. If H0 is false, the expected value of u2, given the independent variables, can
be virtually any function of the xj. A simple approach is to assume a linear function

u2 = δ0 + δ1x1 + δ2x2 + · · ·+ δkxk + v
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where v is an error term with E(v|x1, x2, · · · , xk) = 0 and is independent of x1, x2, · · · , xk.
The null hypothesis of homoskedasticity is

H0 : δ1 = δ2 = · · · = δk = 0 (2)

We never know the actual errors in the population model, but we do have estimates
of them: the OLS residual, ûi, is an estimate of the error ui for observation i. Thus, we
can estimate the equation

û2 = δ0 + δ1x1 + δ2x2 + · · ·+ δkxk + error (3)

We have learned that the F statistics for the overall significance. Similarly, it can be
used to test (2), which is

F =
R2

û2/k

(1−R2
û2)(n− k − 1)

∼ F (k, n− k − 1)

The LM statistic for heteroskedasticity is just the sample size times the R-squared

LM = n ∗R2
û2 ∼ X 2(k)

The LM version of the test is typically called the Breusch-Pagan test for het-
eroskedasticity (BP test).

We summarize the steps for testing for heteroskedasticity using the BP test:

1. Estimate the model (1) by OLS, as usual. Obtain the squared OLS residuals, û2
i

(one for each observation).

2. Run the regression in (3). Keep the R-squared from this regression, R2
û2 .

3. Form either the F statistic or the LM statistic and compute the p− value (using
the Fk,n−k−1 distribution in the former case and the X 2

k distribution in the latter
case). If the p − value is sufficiently small, that is, below the chosen significance
level, then we reject the null hypothesis of homoskedasticity.

2 Estimated Heteroskedasticity: Feasible GLS

In lectures, we saw some examples of where the heteroskedasticity is known up to a
multiplicative form. In most cases, the exact form of heteroskedasticity is not obvious.
In other words, it is difficult to find the function σ2Ω. Nevertheless, in many cases we can
model the function σ2Ω as σ2h(x) and use the data to estimate the unknown parameters
in this model. This results in an estimate of Ω, denoted as ĥ. Using ĥ instead of Ω(h(x))
in the GLS transformation yields an estimator called the feasible GLS (FGLS) estimator
or EGLS.
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Assume that

V (u|x) = σ2exp(δ0 + δ1x1 + δ2x2 + · · ·+ δkxk) (4)

that is h(x) = exp(δ0 + δ1x1 + δ2x2 + · · ·+ δkxk).
Attention, when testing for heteroskedasticity using the Breusch-Pagan test, we as-

sumed that heteroskedasticity was a linear function of the x. Linear alternatives are
fine when testing for heteroskedasticity, but they can be problematic when correcting
for heteroskedasticity using weighted least squares. We have encountered the reason for
this problem before: linear models do not ensure that predicted values are positive, and
our estimated variances must be positive in order to perform WLS.

Since we do not know the true value of (4) which means that δj is unknown, we
will transform this equation into a linear form that, with slight modification, can be
estimated by OLS.

Under assumption (4), we can write

u2 = σ2exp(δ0 + δ1x1 + δ2x2 + · · ·+ δkxk)v

where v has a mean equal to unity, conditional on x. If we assume that v is actually
independent of x, we can write

log(u2) = λ+ δ1x1 + δ2x2 + · · ·+ δkxk + e

where e has a zero mean and is independent of x; the intercept in this equation is
different from δ0, but this is not important in implementing WLS.

As usual, we must replace the unobserved u with the OLS residuals. Therefore, we
run the regression of

log(û2) = λ+ δ1x1 + δ2x2 + · · ·+ δkxk + e (5)

From the unbiased estimators of the δj by using OLS, the fitted values of log(û2), ĝ

can be calculated. Then, the estimates of hi are simply ĥ = exp(ĝ)

We summarize the steps for FGLS.

1. Run the regression of y on x1, x2, · · · , xk and obtain the residuals, û.

2. Creat log(û2) from the OLS residuals in Step 1.

3. Run the regression in equation (5) and obtain the fitted values, ĝ.

4. Exponentiate the fitted values from (5): ĥ = exp(ĝ).

5. Estimate the equation (1) by WLS, using weights 1/
√

ĥ. In other words, we
replace Ω with ĥ.
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3 A Simple Example

We consider the following model to estimate a demand function for daily cigarette con-
sumption. Since most people do not smoke, the dependent variable, cigs, is zero for
most observations. A linear model is not ideal because it can result in negative pre-
dicted values. Nevertheless, we can still learn something about the determinants of
cigarette smoking by using a linear model.

The equation estimated by ordinary least squares, with the usual OLS standard
errors in parentheses, is

ĉigs = −3.64 + 0.880 log(income)− 0.751 log(cigpric)− 0.501educ

(24.08) (0.728) (5.773) (0.167)

+ 0.771age− 0.0090age2 − 2.83restaurn

(0.160) (0.0017) (1.11)

n = 807, R2 = 0.0526,

(6)

where cigs number of cigarettes smoked per day, income is annual income, cigpric is the
per-pack price of cigarettes (in cents), educ is years of schooling, age is age measured in
years, restaurn is a binary indicator equal to unity if the person resides in a state with
restaurant smoking restrictions.

Neither income nor cigarette price is statistically significant. Each year of education
reduces the average cigarettes smoked per day by one-half of a cigarette, and the effect
is statistically significant. Cigarette smoking is also related to age, in a quadratic fash-
ion. Smoking increases with age up until age = 0.771/(2 × 0.009) ≈ 42.83, and then
smoking decreases with age. Both terms in the quadratic are statistically significant.
The presence of a restriction on smoking in restaurants decreases cigarette smoking by
almost three cigarettes per day, on average.

To test the Heteroskedasticity, the Breusch-Pagan regression of the squared OLS
residuals on the independent variables in (6) produces R2

û2 = 0.040 [see equation (3)].
The LM statistic is LM = 807 × 0.040 = 32.28, and this is the outcome of a X 2
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random variable. The p− value is less than 0.000015, which is very strong evidence of
heteroskedasticity.

Therefore, we estimate the equation using the feasible GLS procedure based on equa-
tion (5). The weighted least squares estimates are

ĉigs = 5.64 + 1.30 log(income)− 2.94 log(cigpric)− 0.463educ

(17.80) (0.44) (4.46) (0.120)

+ 0.482age− 0.0056age2 − 3.46restaurn

(0.097) (0.0009) (0.080)

n = 807, R2 = 0.1134,

(7)

The income effect is now statistically significant and larger in magnitude. The price
effect is also notably bigger, but it is still statistically insignificant. [One reason for this
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is that cigpricvaries only across states in the sample, and so there is much less variation
in log(cigpric) than in log(income), educ, and age.]

The estimates on the other variables have, naturally, changed somewhat, but the
basic story is still the same. Cigarette smoking is negatively related to schooling, has
a quadratic relationship with age, and is negatively affected by restaurant smoking
restrictions.
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