Econometrics I's Homework

Deadline: May 24, 2022, PM23:59:59

- The answer should be written in English or Japanese.
- Your name and student ID number should be included in your answer sheet.
- Send your answer (PDF or image file) to the email address: tanizaki@econ.osaka-u.ac.jp.
- The subject should be Econome 1 or 計量 1. Otherwise, your mail may go to the trash box.

Consider the following regression model:

 $y_t = \alpha + \beta X_t + u_t, \qquad t = 1, 2, \cdots, T,$

where y_t and X_t denote dependent and independent variables, respectively. T is the sample size. u_1 , u_2, \dots, u_T are mutually independently distributed with mean zero and variance $\sigma^2 < \infty$. α and β are unknown parameters to be estimated.

- (1) Derive the ordinary least squares estimators of α and β , which should be denoted by $\hat{\alpha}$ and $\hat{\beta}$.
- (2) Obtain mean and variance of $\hat{\beta}$.

1

- (3) Obtain mean and variance of $\hat{\alpha}$.
- (4) Prove that $\hat{\beta}$ is a linear estimator of β .
- (5) Prove that $\hat{\beta}$ is a linear unbiased estimator of β .
- (6) Prove that $\hat{\beta}$ has minimum variance within a class of linear unbiased estimators
- (7) Prove that $\hat{\beta}$ is a consistent estimator of β .
- (8) Derive an asymptotic distribution of $\sqrt{T}(\hat{\beta} \beta)$. Note that a distribution of u_t is not assumed.
- (9) As an extra assumption, suppose that u_t is **normally** distributed for all t. Derive an exact distribution of $\hat{\beta}$, using the moment-generating function.

(10) In addition to (9), consider estimating σ^2 . Show that $\frac{\hat{\beta} - \beta}{s\sqrt{\sum_{t=1}^T \omega_t^2}}$ is a *t* distribution with T - 2 degrees of freedom, where $s^2 = \frac{1}{T-2}\sum_{t=1}^T (y_t - \hat{\alpha} - \hat{\beta}X_t)^2$ and $\omega_t = \frac{X_t - \overline{X}}{\sum_{t=1}^T (X_t - \overline{X})^2}$. You may use the fact that the degree of freedom is T - 2.