Econometrics I's Homework #2

Deadline: June 14, 2022, PM23:59:59

- The answer should be written in English or Japanese.
- Your name and student ID number should be included in your answer sheet.
- The file size of your answer sheet must be less than **2MB** to reduce a network traffic.
- Send your answer to the email address: tanizaki@econ.osaka-u.ac.jp.
- The subject should be **Econome** or 計量. Otherwise, your mail may go to the **trash box**.
- 1 Consider the following regression model:

$$y = X\beta + u$$

where y, X, β and u denote $n \times 1$, $n \times k$, $k \times 1$ and $n \times 1$ matrices. k and n are the number of explanatory variables and the sample size. u_1, u_2, \dots, u_n are mutually independently and <u>normally</u> distributed with mean zero and variance σ^2 , i.e., $u \sim N(0, \sigma^2 I_n)$ for $u = (u_1, u_2, \dots, u_n)'$. β is a vector of unknown parameters to be estimated. Let $\hat{\beta}$ be the ordinary least squares estimator of β .

- (1) Derive $\hat{\beta}$.
- (2) Derive mean and variance of $\hat{\beta}$.
- (3) Derive a distribution of $\hat{\beta}$, using the moment-generating function.
- (4) Show that $s^2 = \frac{1}{n-k} (y X\hat{\beta})'(y X\hat{\beta})$ is an unbiased estimator of σ^2 .
- (5) Show that $\frac{(n-k)s^2}{\sigma^2}$ is distributed as a χ^2 random variable with n-k degrees of freedom.
- (6) Show that $\hat{\beta}$ is a best linear unbiased estimator.
- (7) $\hat{\beta}$ is normally distributed with mean β and variance $\sigma^2(X'X)^{-1}$.

Then, show that
$$\frac{(\hat{\beta} - \beta)' X' X (\hat{\beta} - \beta)}{\sigma^2} \sim \chi^2(k)$$
.

Especially, why is the degree of freedom equal to k?

- (8) Show that $\hat{\beta}$ is independent of $s^2 = \frac{1}{n-k} (y X\hat{\beta})'(y X\hat{\beta})$.
- (9) Show that $\frac{(\hat{\beta} \beta)X'X(\hat{\beta} \beta)/k}{(y X\hat{\beta})'(y X\hat{\beta})/(n k)} \sim F(k, n k).$
- (10) Show that $\sum_{i=1}^{n} (y_i \overline{y})^2 = y'(I_n \frac{1}{n}ii')y$, where $y = (y_1, y_2, \dots, y_n)'$ and $i = (1, 1, \dots, 1)'$.
- (11) Show that $I_n \frac{1}{n}ii'$ is symmetric and idempotent.
- [2] (Statistics Questions) n random variables X_1, X_2, \dots, X_n are assumed to be mutually independently, identically and normally distributed with mean μ and variance σ^2 . We want to prove $\frac{\sum_{j=1}^{n}(X_j-\overline{X})^2}{\sigma^2} \sim \chi^2(n-1)$, which is shown in standard statistics textbooks, where $\overline{X} = \frac{1}{n}\sum_{j=1}^{n}X_j$.

Define $X = (X_1, X_2, \dots, X_n)'$ and $i = (1, 1, \dots, 1)'$, which are $n \times 1$ vectors. Then, we can rewrite as follows:

$$X \sim N(\mu i, \sigma^2 I_n).$$

Answer the following questions.

- (12) What is the distribution of $\frac{(X \mu i)'(X \mu i)}{\sigma^2}$?
- (13) Show that

$$(X - \mu i)'(I_n - \frac{1}{n}ii')(X - \mu i) = \sum_{j=1}^n (X_j - \overline{X})^2.$$

(14) Show that $\frac{(X-\mu i)'(I_n-\frac{1}{n}ii')(X-\mu i)}{\sigma^2} \sim \chi^2(n-1)$. (That is, $\frac{\sum_{j=1}^n (X_j-\overline{X})^2}{\sigma^2} \sim \chi^2(n-1)$ is obtained.)