Econometrics I's Homework \#3

Deadline: July 5, 2022, PM23:59:59 by the email, or PM18:00:00 in Tanizaki's mailbox

- The answer should be written in English or Japanese.
- Your name and student ID number should be included in your answer sheet.
- If the file size is less than 2.5 MB , send your answer to the email address: tanizaki@econ.osaka-u. ac.jp by PM23:59:59. The subject should be Econome or 計量. Otherwise, your mail may go to the trash box.
- If the file size is greater than 2.5 MB , print out your answer and put it in Tanizaki's mailbox (which is near Kyomu) by PM18:00:00.

1 Consider the regression model:

$$
y=X \beta+u, \quad u \sim N\left(0, \sigma^{2} I_{T}\right)
$$

where y, X, β and u are $T \times 1, T \times k, k \times 1$ and $T \times 1$.
Let $\hat{\beta}$ be the ordinary least squares estimator, and $\tilde{\beta}$ be the ordinary least squares estimator restricted to $R \beta=r$, where R and r are $G \times k, G \times 1$ and $G \leq k . \hat{u}$ and \tilde{u} are defined as the OLS residual and the restricted OLS residual, respectively.

$$
\begin{aligned}
& y=X \hat{\beta}+\hat{u} \\
& y=X \tilde{\beta}+\tilde{u}, \quad R \tilde{\beta}=r
\end{aligned}
$$

(1) Derive the restricted OLS $\tilde{\beta}$.
(2) Show the following:

$$
\frac{\left(\tilde{u}^{\prime} \tilde{u}-\hat{u}^{\prime} \hat{u}\right) / G}{\hat{u}^{\prime} \hat{u} /(T-k)} \sim F(G, T-k)
$$

(3) Show the following:

$$
\frac{\left(\hat{R}^{2}-\tilde{R}^{2}\right) / G}{\left(1-\hat{R}^{2}\right) /(T-k)} \sim F(G, T-k)
$$

where \hat{R}^{2} denotes the coefficient of determination from the unrestricted regression model and \tilde{R}^{2} represents the coefficient of determination from the restricted regression model.

2 We consider estimating the following three production functions.

$$
\begin{align*}
& \log \left(Y_{t}\right)=\alpha_{0}+\alpha_{1} \log \left(K_{t}\right)+\alpha_{2} \log \left(L_{t}\right)+u_{t} \tag{1}\\
& \log \left(y_{t}\right)=\beta_{0}+\beta_{1} \log \left(k_{t}\right)+u_{t} \tag{2}\\
& \log \left(Y_{t}\right)=\gamma_{0}+\gamma_{1} \log \left(K_{t}\right)+\gamma_{2} \log \left(L_{t}\right)+\gamma_{3} D_{t}+\gamma_{4} D_{t} \log \left(K_{t}\right)+\gamma_{5} D_{t} \log \left(L_{t}\right)+u_{t} \tag{3}
\end{align*}
$$

The estimation period is $1969-1997$ (it's too old!). Let Y_{t} be GDP (10 billion yen, 1992 price), K_{t} be the net worth (10 billion yen, deflated by the GDP deflator), L_{t} be the number of employees, D_{t} be the dummy variable, which is one after 1991 and zero before 1991, y_{t} be the per capita GDP (10 billion yen, 1992 price, $y_{t}=Y_{t} / L_{t}$), and k_{t} be the per capita net worth (10 billion yen, deflated by the GDP deflator, $k_{t}=K_{t} / L_{t}$). The error terms $u_{1}, u_{2}, \cdots, u_{T}$ are mutually independently, identically and normally distributed.

The following estimation results are obtained.

$$
\begin{gathered}
\log \left(Y_{t}\right)=-\underset{(7.283)}{30.6242}+\underset{(5.054)}{.230042} \log \left(K_{t}\right)+\underset{(8.266)}{2.23565} \log \left(L_{t}\right) \\
R^{2}=.986684, \quad \bar{R}^{2}=.985659, \quad \widehat{\sigma}^{2}=.00141869 \\
\log \left(y_{t}\right)=-\underset{(41.08)}{3.53058}+\underset{(19.62)}{.504043} \log \left(k_{t}\right) \\
R^{2}=.934448, \quad \bar{R}^{2}=.932020, \quad \widehat{\sigma}^{2}=.00354801 \\
\log \left(Y_{t}\right)=-\underset{(3.630)}{34.6168}+\underset{(2.588)}{.204302} \log \left(K_{t}\right)+\underset{(4.155)}{2.48045} \log \left(L_{t}\right) \\
-\underset{(1.090)}{54.8287} D_{t}+\underset{(.4665)}{.243766} D_{t} \log \left(K_{t}\right)+\underset{(1.134)}{2.84275} D_{t} \log \left(L_{t}\right) \\
R^{2}=.987960, \quad \bar{R}^{2}=.985342, \quad \widehat{\sigma}^{2}=.00145010
\end{gathered}
$$

Note that the values in the parentheses denote the t values, R^{2} is the coefficient of determination, \bar{R}^{2} is the adjusted R^{2}, and $\widehat{\sigma}^{2}$ is the variance estimate of regression.

Answer the following questions.
(4) Test $H_{0}: \alpha_{1}=\alpha_{2}=0$.
(5) Test whether the production function is homogeneous.
(6) Test whether the structural change occurred after 1991.

For each question, show the testing procedure in detail.

3
(7) Show that there exists P such that $\Omega=P P^{\prime}$ when Ω is a positive definite matrix.
(8) Consider the following regression model:

$$
y_{t}=x_{t} \beta+u_{t}, \quad u_{t} \sim N\left(0, \sigma^{2} z_{t}^{2}\right), \quad t=1,2, \cdots, T
$$

where $u_{1}, u_{2}, \cdots, u_{T}$ are mutually independent.
What is the variance-covariance matrix, denoted by $\sigma^{2} \Omega$, of $u=\left(u_{1}, u_{2}, \cdots, u_{T}\right)^{\prime}$.
(9) Consider the following regression model:

$$
y_{t}=x_{t} \beta+u_{t}, \quad u_{t}=\rho u_{t-1}+\epsilon_{t}, \quad \epsilon_{t} \sim N\left(0, \sigma^{2}\right), \quad t=1,2, \cdots, T
$$

where $\epsilon_{1}, \epsilon_{2}, \cdots, \epsilon_{T}$ are mutually independent.
What is the variance-covariance matrix, denoted by $\sigma^{2} \Omega$, of $u=\left(u_{1}, u_{2}, \cdots, u_{T}\right)^{\prime}$.
(10) Let b be the best linear unbiased estimator of β under the following regression model:

$$
y=X \beta+u, \quad u \sim N\left(0, \sigma^{2} \Omega\right)
$$

where y, X, β and u are $T \times 1, T \times k, k \times 1$ and $T \times 1$.
Derive b.
(11) Consider the regression model in (3). We have two estimators, $\hat{\beta}$ and b, to estimate β. Obtain $\mathrm{E}(\hat{\beta})$ and $\mathrm{V}(\hat{\beta})$.

Show that $\mathrm{V}(\hat{\beta})-\mathrm{V}(b)$ is a positive definite matrix.

