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1 Maximum Likelihood Estimation MLE, 1 [1 [ ) —
Review

1. We have random variables X;, X, - - -, X,,, which are assumed to be mutually

independently and identically distributed.

2. The distribution function of {X;}?, is f(x;6), where x = (x;,x2,---,x,) and
0=(u2).
Note that X is a vector of random variables and x is a vector of their realizations

(i.e., observed data).

Likelihood function L(-) is defined as L(6; x) = f(x;0).

Note that f(x;0) = [], f(x;;0) when X;, X5, -+, X,, are mutually indepen-



dently and identically distributed.

The maximum likelihood estimator (MLE) of 6 is 8 such that:

max L(6; X). = max log L(6; X).
0 0

MLE satisfies the following two conditions:
X dlog L(0; X)

0.
(a) 50
0% log L(0; X
(b) % is a negative definite matrix.

. Fisher’s information matrix (0 OO0 OO0 0O OO O O) is defined as:

0% log L(6; X))

1(6) = -E
© ( 06000’
where we have the following equality:

P log L(6; X)\ _ _ 0log L(H; X) dlog L(6; X)\ _ dlog L(6; X)
—E( 9000’ )=E( 90 o0 J=V( 90 )
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Proof of the above equality:

f L(9; x)dx =1

Take a derivative with respect to 6.

OL(o:
f ©: 40
00

(We assume that (i) the domain of x does not depend on 6 and (ii) the derivative
0L(0; x)
00

Rewriting the above equation, we obtain:

f 0log L(6; x)
00

exists.)

L(6; x)dx = 0,

1.e.,
E(W) 0.
06
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Again, differentiating the above with respect to 6, we obtain:

& logL(#;x) dlog L(6; x) OL(6; x)
f “ae08 L(6; x)dx + f 50 50 dx

0% log L(6; x) dlog L(6; x) 8 log L(H; x)
= | ——==2""19:
f deoy DA+ f 80 o0
0% log L(6; X) dlog L(6; X) dlog L(6; X)
-E E
(e )+ E—2 Py

L(6; x)dx

)=o0.

Therefore, we can derive the following equality:

. 0% log L(6; X) _E dlog L(6; X) dlog L(6; X) _v dlog L(6; X)
0606’ B 00 o0 B 00

dlog L(0; X))
goero) o,
a6

where the second equality utilizes E(



4. Cramer-Rao Lower Bound (D 0000000 O0O0O): (1)
Suppose that an unbiased estimator of 6 is given by s(X).

Then, we have the following:
V(s(X)) = (1)

Proof:

The expectation of s(X) is:
E(s(X)) = f s(x)L(6; x)dx.
Differentiating the above with respect to 6,
OE(s(X)) f OL(9; x) f 0log L(6; x)
_—— _— = —L :
50 s(x) 50 dx s(x) 50 (6; x)dx

dlog L(6; X))

= Cov (s(X), 50
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For simplicity, let s(X) and 6 be scalars.

Then,
IE(s(X)\ dlog L6; X)\\ dlog L(6; X)
(—89 ) = (COV (s(X), B — )) =p°V(isX)V (—89 )
<V (s(X)V (—a log aL@(e; X)) ,

dlog L(6; X) .
where p denotes the correlation coefficient between s(X) and w, ie

86
oo 21020
p =
W\/ alogL(e X))

Note that |p| < 1.
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Therefore, we have the following inequality:

1.e.,

06

IE(s(X))
06

2 .
) < V(s(X) V(alogL(H,X))’

(6E<s(X>> )2
09
- (8 log L(6; X))
00

V(s(X)) >

Especially, when E(s(X)) = 6,

1 _ -1
V(s(X)) > ~ ( T X)) = (1O)".
06>

Even in the case where s(X) is a vector, the following inequality holds.

V(s(X)) = (1)),
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where 1(0) is defined as:

0% log L(6; X)
16)= _E( 9000’ )
_E 0log L(6; X) 0log L(6; X) _v dlog L(6; X)
B 90 0 - 90 '

The variance of any unbiased estimator of 6 is larger than or equal to (1(6))~".
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5. Asymptotic Normality of MLE:

Let 6 be MLE of 6.
As n goes to infinity, we have the following result:

-1
Vn@ -6 — N[O, 1im(@) ]

n—oo n

10
where it is assumed that lim (2) converges.

n—oo n
That is, when 7 is large, 6 is approximately distributed as follows:
d~N(0.ae) ™).

Suppose that s(X) = 6.

When n is large, V(s(X)) is approximately equal to (1(9))_1.
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Practically, we utilize the following approximated distribution:
§~N(0.a@™).
Then, we can obtain the significance test and the confidence interval for 6

. Central Limit Theorem: Let X;, X;, ---, X, be mutually independently dis-
tributed random variables with mean E(X;) = yx and variance V(X;) = 0> < oo

fori=1,2,---,n.
Define X = (1/n) Y2, X;.
Then, the central limit theorem is given by:

X-EX) X-pu
/V(?) o/\n

Note that E(X) = u and V(X) = o%/n.

— N(,1).
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That is,
— — 1 n . 2
Vn(X W) = NG i; (X; —u) — N(@O,0).

Note that E(X) = u and nV(X) = 2.

In the case where X; is a vector of random variable with mean u and variance

Y < oo, the central limit theorem is given by:

VaX —p) = —= > (X;=p) — NO.%).
i=1

1
i -

Note that E(X) = u and nV(X) = .
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