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If you have any questions, contact TAs.

• Download the lecture notes from the following websites:

http://www2.econ.osaka-u.ac.jp/˜tanizaki/class/2023/econome2/

http://stat.econ.osaka-u.ac.jp/˜tanizaki/class/2023/econome2/
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1 Maximum Likelihood Estimation (MLE,
さ い ゆ う

最尤法) —

Review

1. We have random variables X1, X2, · · ·, Xn, which are assumed to be mutually

independently and identically distributed.

2. The distribution function of {Xi}ni=1 is f (x; θ), where x = (x1, x2, · · · , xn) and

θ = (µ,Σ).

Note that X is a vector of random variables and x is a vector of their realizations

(i.e., observed data).

Likelihood function L(·) is defined as L(θ; x) = f (x; θ).

Note that f (x; θ) =
∏n

i=1 f (xi; θ) when X1, X2, · · ·, Xn are mutually indepen-
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dently and identically distributed.

The maximum likelihood estimator (MLE) of θ is θ such that:

max
θ

L(θ; X). ⇐⇒ max
θ

log L(θ; X).

MLE satisfies the following two conditions:

(a)
∂ log L(θ; X)

∂θ
= 0.

(b)
∂2 log L(θ; X)

∂θ∂θ′
is a negative definite matrix.

3. Fisher’s information matrix (フィッシャーの情報行列) is defined as:

I(θ) = −E
(∂2 log L(θ; X)

∂θ∂θ′
)
,

where we have the following equality:

−E
(∂2 log L(θ; X)

∂θ∂θ′
)

= E
(∂ log L(θ; X)

∂θ

∂ log L(θ; X)
∂θ′

)
= V

(∂ log L(θ; X)
∂θ

)
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Proof of the above equality:
∫

L(θ; x)dx = 1

Take a derivative with respect to θ.
∫

∂L(θ; x)
∂θ

dx = 0

(We assume that (i) the domain of x does not depend on θ and (ii) the derivative
∂L(θ; x)
∂θ

exists.)

Rewriting the above equation, we obtain:
∫

∂ log L(θ; x)
∂θ

L(θ; x)dx = 0,

i.e.,

E
(
∂ log L(θ; X)

∂θ

)
= 0.
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Again, differentiating the above with respect to θ, we obtain:
∫

∂2 log L(θ; x)
∂θ∂θ′

L(θ; x)dx +

∫
∂ log L(θ; x)

∂θ

∂L(θ; x)
∂′θ

dx

=

∫
∂2 log L(θ; x)

∂θ∂θ′
L(θ; x)dx +

∫
∂ log L(θ; x)

∂θ

∂ log L(θ; x)
∂θ′

L(θ; x)dx

= E
(∂2 log L(θ; X)

∂θ∂θ′
)

+ E
(∂ log L(θ; X)

∂θ

∂ log L(θ; X)
∂θ′

)
= 0.

Therefore, we can derive the following equality:

−E
(
∂2 log L(θ; X)

∂θ∂θ′

)
= E

(
∂ log L(θ; X)

∂θ

∂ log L(θ; X)
∂θ′

)
= V

(
∂ log L(θ; X)

∂θ

)
,

where the second equality utilizes E
(
∂ log L(θ; X)

∂θ

)
= 0.
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4. Cramer-Rao Lower Bound (クラメール・ラオの下限): (I(θ))−1

Suppose that an unbiased estimator of θ is given by s(X).

Then, we have the following:

V(s(X)) ≥ (I(θ))−1

Proof:

The expectation of s(X) is:

E(s(X)) =

∫
s(x)L(θ; x)dx.

Differentiating the above with respect to θ,

∂E(s(X))
∂θ′

=

∫
s(x)

∂L(θ; x)
∂θ′

dx =

∫
s(x)

∂ log L(θ; x)
∂θ′

L(θ; x)dx

= Cov
(
s(X),

∂ log L(θ; X)
∂θ

)

10



For simplicity, let s(X) and θ be scalars.

Then,
(
∂E(s(X))

∂θ

)2

=

(
Cov

(
s(X),

∂ log L(θ; X)
∂θ

))2

= ρ2V (s(X)) V
(
∂ log L(θ; X)

∂θ

)

≤ V (s(X)) V
(
∂ log L(θ; X)

∂θ

)
,

where ρ denotes the correlation coefficient between s(X) and
∂ log L(θ; X)

∂θ
, i.e.,

ρ =

Cov
(
s(X),

∂ log L(θ; X)
∂θ

)

√
V (s(X))

√
V

(
∂ log L(θ; X)

∂θ

) .

Note that |ρ| ≤ 1.
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Therefore, we have the following inequality:

(
∂E(s(X))

∂θ

)2

≤ V(s(X)) V
(
∂ log L(θ; X)

∂θ

)
,

i.e.,

V(s(X)) ≥

(
∂E(s(X))

∂θ

)2

V
(
∂ log L(θ; X)

∂θ

)

Especially, when E(s(X)) = θ,

V(s(X)) ≥ 1

−E
(
∂2 log L(θ; X)

∂θ2

) = (I(θ))−1.

Even in the case where s(X) is a vector, the following inequality holds.

V(s(X)) ≥ (I(θ))−1,
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where I(θ) is defined as:

I(θ) = −E
(
∂2 log L(θ; X)

∂θ∂θ′

)

= E
(
∂ log L(θ; X)

∂θ

∂ log L(θ; X)
∂θ′

)
= V

(
∂ log L(θ; X)

∂θ

)
.

The variance of any unbiased estimator of θ is larger than or equal to (I(θ))−1.
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5. Asymptotic Normality of MLE:

Let θ̃ be MLE of θ.

As n goes to infinity, we have the following result:

√
n(θ̃ − θ) −→ N

0, lim
n→∞

(
I(θ)
n

)−1 ,

where it is assumed that lim
n→∞

(
I(θ)
n

)
converges.

That is, when n is large, θ̃ is approximately distributed as follows:

θ̃ ∼ N
(
θ, (I(θ))−1

)
.

Suppose that s(X) = θ̃.

When n is large, V(s(X)) is approximately equal to (I(θ))−1.
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Practically, we utilize the following approximated distribution:

θ̃ ∼ N
(
θ, (I(θ̃))−1

)
.

Then, we can obtain the significance test and the confidence interval for θ

6. Central Limit Theorem: Let X1, X2, · · ·, Xn be mutually independently dis-

tributed random variables with mean E(Xi) = µ and variance V(Xi) = σ2 < ∞
for i = 1, 2, · · · , n.

Define X = (1/n)
∑n

i=1 Xi.

Then, the central limit theorem is given by:

X − E(X)√
V(X)

=
X − µ
σ/
√

n
−→ N(0, 1).

Note that E(X) = µ and V(X) = σ2/n.
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That is,
√

n(X − µ) =
1√
n

n∑

i=1

(Xi − µ) −→ N(0, σ2).

Note that E(X) = µ and nV(X) = σ2.

In the case where Xi is a vector of random variable with mean µ and variance

Σ < ∞, the central limit theorem is given by:

√
n(X − µ) =

1√
n

n∑

i=1

(Xi − µ) −→ N(0,Σ).

Note that E(X) = µ and nV(X) = Σ.
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