7. **Central Limit Theorem II:** Let X_1, X_2, \dots, X_n be mutually independently distributed random variables with mean $E(X_i) = \mu$ and variance $V(X_i) = \sigma_i^2$ for $i = 1, 2, \dots, n$.

Assume:

$$\sigma^2 = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \sigma_i^2 < \infty.$$

Define $\overline{X} = (1/n) \sum_{i=1}^{n} X_i$.

Then, the central limit theorem is given by:

$$\frac{\overline{X} - \mathrm{E}(\overline{X})}{\sqrt{\mathrm{V}(\overline{X})}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1),$$

i.e.,

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \sigma^2).$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) \longrightarrow \sigma^2$.

In the case where X_i is a vector of random variable with mean μ and variance Σ_i , the central limit theorem is given by:

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \Sigma),$$

where
$$\Sigma = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \Sigma_i < \infty$$
.

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) \longrightarrow \Sigma$.

[Review of Asymptotic Theories]

• Convergence in Probability (確率収束) $X_n \longrightarrow a$, i.e., X converges in probability to a, where a is a fixed number.

• Convergence in Distribution (分布収束) $X_n \longrightarrow X$, i.e., X converges in distribution to X. The distribution of X_n converges to the distribution of X as n goes to infinity.

Some Formulas

 X_n and Y_n : Convergence in Probability

 Z_n : Convergence in Distribution

- If $X_n \longrightarrow a$, then $f(X_n) \longrightarrow f(a)$.
- If $X_n \longrightarrow a$ and $Y_n \longrightarrow b$, then $f(X_n Y_n) \longrightarrow f(ab)$.
- If $X_n \longrightarrow a$ and $Z_n \longrightarrow Z$, then $X_n Z_n \longrightarrow aZ$, i.e., aZ is distributed with mean E(aZ) = aE(Z) and variance $V(aZ) = a^2V(Z)$.

[End of Review]

8. Weak Law of Large Numbers (大数の弱法則) — Review:

n random variables X_1, X_2, \dots, X_n are assumed to be mutually independently and identically distributed, where $E(X_i) = \mu$ and $V(X_i) = \sigma^2 < \infty$.

Then, $\overline{X} \longrightarrow \mu$ as $n \longrightarrow \infty$, which is called the **weak law of large numbers**.

- → Convergence in probability
- → Proved by Chebyshev's inequality
- 9. Some Formulas of Expectaion and Variance in Multivariate Cases
 - Review:

A vector of randam variavle X: $E(X) = \mu$ and $V(X) \equiv E((X - \mu)(X - \mu)') = \Sigma$ Then, $E(AX) = A\mu$ and $V(AX) = A\Sigma A'$.

Proof:

$$E(AX) = AE(X) = A\mu$$

$$\begin{aligned} V(AX) &= \mathrm{E}((AX - A\mu)(AX - A\mu)') = \mathrm{E}(A(X - \mu)(A(X - \mu))') \\ &= \mathrm{E}(A(X - \mu)(X - \mu)'A') = A\mathrm{E}((X - \mu)(X - \mu)')A' = A\mathrm{V}(X)A' = A\Sigma A' \end{aligned}$$

10. Asymptotic Normality of MLE — Proof:

The density (or probability) function of X_i is given by $f(x_i; \theta)$.

The likelihood function is: $L(\theta; x) \equiv f(x; \theta) = \prod_{i=1}^{n} f(x_i; \theta)$,

where $x = (x_1, x_2, \dots, x_n)$.

MLE of θ results in the following maximization problem:

$$\max_{\theta} \log L(\theta; x).$$

A solution of the above problem is given by MLE of θ , denoted by $\tilde{\theta}$.

That is, $\tilde{\theta}$ is given by the θ which satisfies the following equation:

$$\frac{\partial \log L(\theta; x)}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \log f(x_i; \theta)}{\partial \theta} = 0.$$

Replacing x_i by the underlying random variable X_i , $\frac{\partial \log f(X_i; \theta)}{\partial \theta}$ is taken as the *i*th random variable, i.e., X_i in the **Central Limit Theorem II**.

Consider applying **Central Limit Theorem II** as follows:

$$\frac{\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta} - \mathrm{E}\left(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}\right)}{\sqrt{\mathrm{V}\left(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}\right)}} = \frac{\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta} - \mathrm{E}\left(\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}\right)}{\sqrt{\mathrm{V}\left(\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}\right)}}.$$

Note that

$$\sum_{i=1}^{n} \frac{\partial \log f(X_i; \theta)}{\partial \theta} = \frac{\partial \log L(\theta; X)}{\partial \theta}$$

In this case, we need the following expectation and variance:

$$E\left(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}\right)=E\left(\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}\right)=0,$$

and

$$V\left(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}\right)=V\left(\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}\right)=\frac{1}{n^{2}}I(\theta).$$

Note that
$$E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0$$
 and $V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = I(\theta)$.

Thus, the asymptotic distribution of

$$\frac{1}{n} \frac{\partial \log L(\theta; X)}{\partial \theta} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f(X_i; \theta)}{\partial \theta}$$

is given by:

$$\begin{split} &\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f(X_{i}; \theta)}{\partial \theta} - \mathrm{E} \left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f(X_{i}; \theta)}{\partial \theta} \right) \right) \\ &= \sqrt{n} \left(\frac{1}{n} \frac{\partial \log L(\theta; X)}{\partial \theta} - \mathrm{E} \left(\frac{1}{n} \frac{\partial \log L(\theta; X)}{\partial \theta} \right) \right) \\ &= \frac{1}{\sqrt{n}} \frac{\partial \log L(\theta; X)}{\partial \theta} \longrightarrow N(0, \Sigma) \end{split}$$

where

$$nV\left(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}\right) = \frac{1}{n}V\left(\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}\right) = \frac{1}{n}V\left(\frac{\partial \log L(\theta;X)}{\partial \theta}\right)$$
$$= \frac{1}{n}I(\theta) \longrightarrow \Sigma.$$

That is.

$$\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta; X)}{\partial \theta} \longrightarrow N(0, \Sigma),$$

where $X = (X_1, X_2, \dots, X_n)$.

Now, replacing θ by $\tilde{\theta}$, consider the asymptotic distribution of

$$\frac{1}{\sqrt{n}}\frac{\partial \log L(\tilde{\theta}; X)}{\partial \theta},$$

which is expanded around $\tilde{\theta} = \theta$ as follows:

$$0 = \frac{1}{\sqrt{n}} \frac{\partial \log L(\tilde{\theta}; X)}{\partial \theta} \approx \frac{1}{\sqrt{n}} \frac{\partial \log L(\theta; X)}{\partial \theta} + \frac{1}{\sqrt{n}} \frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'} (\tilde{\theta} - \theta).$$

Therefore,

$$-\frac{1}{\sqrt{n}}\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}(\tilde{\theta} - \theta) \approx \frac{1}{\sqrt{n}}\frac{\partial \log L(\theta;X)}{\partial \theta} \longrightarrow N(0,\Sigma).$$

The left-hand side is rewritten as:

$$-\frac{1}{\sqrt{n}}\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}(\tilde{\theta} - \theta) = \sqrt{n} \left(-\frac{1}{n}\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}\right)(\tilde{\theta} - \theta).$$

Then,

$$\sqrt{n}(\tilde{\theta} - \theta) \approx \left(-\frac{1}{n} \frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right)^{-1} \left(\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta; X)}{\partial \theta}\right)$$
$$\longrightarrow N(0, \Sigma^{-1} \Sigma \Sigma^{-1}) = N(0, \Sigma^{-1}).$$

Using the law of large number, note that

$$-\frac{1}{n}\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'} \longrightarrow \lim_{n \to \infty} \frac{1}{n} \left(-\mathbb{E} \left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'} \right) \right)$$
$$= \lim_{n \to \infty} \frac{1}{n} \left(\mathbb{V} \left(\frac{\partial \log L(\theta; X)}{\partial \theta'} \right) \right) = \lim_{n \to \infty} \frac{1}{n} I(\theta) = \Sigma,$$