
8. Weak Law of Large Numbers (
たいすう

大数の弱法則) — Review:

Suppose that X1, X2, · · ·, Xn are distributed.

As n −→ ∞, X −→ lim
n→∞

E(X) under lim
n→∞

nV(X) < ∞, which is called the

weak law of large numbers.

−→ Convergence in probability

−→ Proved by Chebyshev’s inequality

(i) Suppose that X1, X2, · · ·, Xn are assumed to be mutually independently

and identically distributed with E(Xi) = µ and V(Xi) = σ2 < ∞.

Then, X −→ µ as n −→ ∞.

Note that E(X) = µ and nV(X) = σ2.
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(ii) Suppoose that X1, X2, · · ·, Xn are assumed to be mutually independently

distributed with E(Xi) = µi and V(Xi) = σ2
i .

Assume that

(a) E(X) =
1
n

n∑

i=1

µi −→ µ, i.e., lim
n→∞

E(X) = µ

and

(b) nV(X) =
1
n

n∑

i=1

σ2
i −→ σ2 < ∞, ie., lim

n→∞
nV(X) = σ2 < ∞.

Then, X −→ µ as n −→ ∞,

Note that E(X) =
1
n

n∑

i=1

µi and nV(X) =
1
n

n∑

i=1

σ2
i .

(iii) Suppose that X1, X2, · · ·, Xn are assumed to be serially correlated with

E(Xi) = µi and Cov(Xi, X j) = σi j.

Assume that
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(a) E(X) =
1
n

n∑

i=1

µi −→ µ, i.e., lim
n→∞

E(X) = µ

and

(b) nV(X) =
1
n

n∑

i=1

n∑

j=1

σi j −→ σ2 < ∞, ie., lim
n→∞

nV(X) = σ2 < ∞.

Then, X −→ µ as n −→ ∞,

Note that E(X) =
1
n

n∑

i=1

µi and nV(X) =
1
n

n∑

i=1

n∑

j=1

σi j.
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9. Some Formulas of Expectaion and Variance in Multivariate Cases

— Review:

A vector of randam variavle X: E(X) = µ and V(X) ≡ E((X − µ)(X − µ)′) = Σ

Then, E(AX) = Aµ and V(AX) = AΣA′.

Proof:

E(AX) = AE(X) = Aµ

V(AX) = E((AX − Aµ)(AX − Aµ)′) = E(A(X − µ)(A(X − µ))′)

= E(A(X − µ)(X − µ)′A′) = AE((X − µ)(X − µ)′)A′ = AV(X)A′ = AΣA′

10. Asymptotic Normality of MLE — Proof:

The density (or probability) function of Xi is given by f (xi; θ).

The likelihood function is: L(θ; x) ≡ f (x; θ) =
∏n

i=1 f (xi; θ),
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where x = (x1, x2, · · · , xn).

MLE of θ results in the following maximization problem:

max
θ

log L(θ; x).

A solution of the above problem is given by MLE of θ, denoted by θ̃.

That is, θ̃ is given by the θ which satisfies the following equation:

∂ log L(θ; x)
∂θ

=

n∑

i=1

∂ log f (xi; θ)
∂θ

= 0.

Replacing xi by the underlying random variable Xi,
∂ log f (Xi; θ)

∂θ
is taken as

the ith random variable, i.e., Xi in the Central Limit Theorem II.
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Consider applying Central Limit Theorem II as follows:

1
n

n∑

i=1

∂ log f (Xi; θ)
∂θ

− E
(1
n

n∑

i=1

∂ log f (Xi; θ)
∂θ

)

√
V
(1
n

n∑

i=1

∂ log f (Xi; θ)
∂θ

) =

1
n
∂ log L(θ; X)

∂θ
− E

(1
n
∂ log L(θ; X)

∂θ

)

√
V
(1
n
∂ log L(θ; X)

∂θ

) .

Note that
n∑

i=1

∂ log f (Xi; θ)
∂θ

=
∂ log L(θ; X)

∂θ

In this case, we need the following expectation and variance:

E
(1
n

n∑

i=1

∂ log f (Xi; θ)
∂θ

)
= E

(1
n
∂ log L(θ; X)

∂θ

)
= 0,

and

V
(1
n

n∑

i=1

∂ log f (Xi; θ)
∂θ

)
= V

(1
n
∂ log L(θ; X)

∂θ

)
=

1
n2 I(θ).
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Note that E
(∂ log L(θ; X)

∂θ

)
= 0 and V

(∂ log L(θ; X)
∂θ

)
= I(θ).

Thus, the asymptotic distribution of

1
n
∂ log L(θ; X)

∂θ
=

1
n

n∑

i=1

∂ log f (Xi; θ)
∂θ

is given by:

√
n


1
n

n∑

i=1

∂ log f (Xi; θ)
∂θ

− E
(1
n

n∑

i=1

∂ log f (Xi; θ)
∂θ

)

=
√

n
(
1
n
∂ log L(θ; X)

∂θ
− E

(1
n
∂ log L(θ; X)

∂θ

))

=
1√
n
∂ log L(θ; X)

∂θ
−→ N(0,Σ)

where

nV
(1
n

n∑

i=1

∂ log f (Xi; θ)
∂θ

)
=

1
n

V
( n∑

i=1

∂ log f (Xi; θ)
∂θ

)
=

1
n

V
(∂ log L(θ; X)

∂θ

)

=
1
n

I(θ) −→ Σ.
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That is,
1√
n
∂ log L(θ; X)

∂θ
−→ N(0,Σ),

where X = (X1, X2, · · · , Xn).

Now, replacing θ by θ̃, consider the asymptotic distribution of

1√
n
∂ log L(θ̃; X)

∂θ
,

which is expanded around θ̃ = θ as follows:

0 =
1√
n
∂ log L(θ̃; X)

∂θ
≈ 1√

n
∂ log L(θ; X)

∂θ
+

1√
n
∂2 log L(θ; X)

∂θ∂θ′
(θ̃ − θ).

Therefore,

− 1√
n
∂2 log L(θ; X)

∂θ∂θ′
(θ̃ − θ) ≈ 1√

n
∂ log L(θ; X)

∂θ
−→ N(0,Σ).
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The left-hand side is rewritten as:

− 1√
n
∂2 log L(θ; X)

∂θ∂θ′
(θ̃ − θ) =

√
n
(
−1

n
∂2 log L(θ; X)

∂θ∂θ′

)
(θ̃ − θ).

Then,

√
n(θ̃ − θ) ≈

(
−1

n
∂2 log L(θ; X)

∂θ∂θ′
)−1( 1√

n
∂ log L(θ; X)

∂θ

)

−→ N(0,Σ−1ΣΣ−1) = N(0,Σ−1).

Using the law of large number, note that

−1
n
∂2 log L(θ; X)

∂θ∂θ′
−→ lim

n→∞
1
n

(
−E

(∂2 log L(θ; X)
∂θ∂θ′

))

= lim
n→∞

1
n

(
V
(∂ log L(θ; X)

∂

))
= lim

n→∞
1
n

I(θ) = Σ,
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and
(1
n
∂2 log L(θ; X)

∂θ∂θ′
)−1( 1√

n
∂ log L(θ; X)

∂θ

)
has the same asymptotic distribu-

tion as Σ−1
( 1√

n
∂ log L(θ; X)

∂θ

)
.

11. Optimization (最適化):

MLE of θ results in the following maximization problem:

max
θ

log L(θ; x).

We often have the case where the solution of θ is not derived in closed form.

=⇒ Optimization procedure

0 =
∂ log L(θ; x)

∂θ
=
∂ log L(θ∗; x)

∂θ
+
∂2 log L(θ∗; x)

∂θ∂θ′
(θ − θ∗).

Solving the above equation with respect to θ, we obtain the following:

θ = θ∗ −
(
∂2 log L(θ∗; x)

∂θ∂θ′

)−1
∂ log L(θ∗; x)

∂θ
.
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Replace the variables as follows:

θ −→ θ(i+1), θ∗ −→ θ(i).

Then, we have:

θ(i+1) = θ(i) −
(
∂2 log L(θ(i); x)

∂θ∂θ′

)−1
∂ log L(θ(i); x)

∂θ
.

=⇒ Newton-Raphson method (ニュートン・ラプソン法)

Replacing
∂2 log L(θ(i); x)

∂θ∂θ′
by E

(
∂2 log L(θ(i); x)

∂θ∂θ′

)
, we obtain the following op-

timization algorithm:

θ(i+1) = θ(i) −
(
E

(
∂2 log L(θ(i); x)

∂θ∂θ′

))−1
∂ log L(θ(i); x)

∂θ

= θ(i) +
(
I(θ(i))

)−1 ∂ log L(θ(i); x)
∂θ

=⇒Method of Scoring (スコア法)
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2 Qualitative Dependent Variable (質的従属変数)

1. Discrete Choice Model (離散選択モデル)

2. Limited Dependent Variable Model (制限従属変数モデル)

3. Count Data Model (計数データモデル)

Usually, the regression model is given by:

yi = Xiβ + ui, ui ∼ N(0, σ2), i = 1, 2, · · · , n,

where yi is a continuous type of random variable within the interval from −∞ to∞.

When yi is discrete or truncated, what happens?
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2.1 Discrete Choice Model (離散選択モデル)

2.1.1 Binary Choice Model (二値選択モデル)

Example 1: Consider the regression model:

y∗i = Xiβ + ui, ui ∼ (0, σ2), i = 1, 2, · · · , n,

where y∗i is unobserved, but yi is observed as 0 or 1, i.e.,

yi =


1, if y∗i > 0,

0, if y∗i ≤ 0.

Consider the probability that yi takes 1, i.e.,

P(yi = 1) = P(y∗i > 0) = P(ui > −Xiβ) = P(u∗i > −Xiβ
∗) = 1 − P(u∗i ≤ −Xiβ

∗)

= 1 − F(−Xiβ
∗) = F(Xiβ

∗), (if the dist. of u∗i is symmetric.),
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where u∗i =
ui

σ
, and β∗ =

β

σ
are defined.

(*) β∗ can be estimated, but β and σ2 cannot be estimated separately (i.e., β and σ2

are not identified).

The distribution function of u∗i is given by F(x) =

∫ x

−∞
f (z)dz.

If u∗i is standard normal, i.e., u∗i ∼ N(0, 1), we call probit model.

F(x) =

∫ x

−∞
(2π)−1/2 exp(−1

2
z2)dz, f (x) = (2π)−1/2 exp(−1

2
x2).

If u∗i is logistic, we call logit model.

F(x) =
1

1 + exp(−x)
, f (x) =

exp(−x)
(1 + exp(−x))2 .

We can consider the other distribution function for u∗i .
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Likelihood Function: yi is the following Bernoulli distribution:

f (yi) = (P(yi = 1))yi(P(yi = 0))1−yi = (F(Xiβ
∗))yi(1 − F(Xiβ

∗))1−yi , yi = 0, 1.

[Review — Bernoulli Distribution (ベルヌイ分布)]

Suppose that X is a Bernoulli random variable. the distribution of X, denoted by f (x),

is:

f (x) = px(1 − p)1−x, x = 0, 1.

The mean and variance are:

µ = E(X) =

1∑

x=0

x f (x) = 0 × (1 − p) + 1 × p = p,

σ2 = V(X) = E((X − µ)2) =

1∑

x=0

(x − µ)2 f (x) = (0 − p)2(1 − p) + (1 − p)2 p = p(1 − p).

[End of Review]
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The likelihood function is given by:

L(β∗) = f (y1, y2, · · · , yn) =

n∏

i=1

f (yi) =

n∏

i=1

(F(Xiβ
∗))yi(1 − F(Xiβ

∗))1−yi ,

The log-likelihood function is:

log L(β∗) =

n∑

i=1

(
yi log F(Xiβ

∗) + (1 − yi) log(1 − F(Xiβ
∗))

)
,

Solving the maximization problem of log L(β∗) with respect to β∗, the first order

condition is:

∂ log L(β∗)
∂β∗

=

n∑

i=1

(yiX′i f (Xiβ
∗)

F(Xiβ∗)
− (1 − yi)X′i f (Xiβ

∗)
1 − F(Xiβ∗)

)

=

n∑

i=1

X′i f (Xiβ
∗)(yi − F(Xiβ

∗))
F(Xiβ∗)(1 − F(Xiβ∗))

=

n∑

i=1

X′i fi(yi − Fi)
Fi(1 − Fi)

= 0,

where fi ≡ f (Xiβ
∗) and Fi ≡ F(Xiβ

∗). Remember that f (x) ≡ dF(x)
dx

.
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The second order condition is:

∂2 log L(β∗)
∂β∗∂β∗′

=

n∑

i=1

X′i
∂ fi

∂β∗
(yi − Fi)

Fi(1 − Fi)
+

n∑

i=1

X′i fi
∂( fi − Fi)
∂β∗

Fi(1 − Fi)

+

n∑

i=1

X′i fi(yi − Fi)
∂(Fi(1 − Fi))−1

∂β∗

=

n∑

i=1

X′i Xi f ′i (yi − Fi)
Fi(1 − Fi)

−
n∑

i=1

X′i Xi f 2
i

Fi(1 − Fi)
+

n∑

i=1

X′i fi(yi − Fi)
Xi fi(1 − 2Fi)
(Fi(1 − Fi))2

is a negative definite matrix.

For maximization, the method of scoring is given by:

β∗( j+1) = β∗( j) +

(
−E

(∂2 log L(β∗( j))
∂β∗∂β∗′

))−1
∂ log L(β∗( j))

∂β∗

= β∗( j) +


n∑

i=1

X′i Xi( f ( j)
i )2

F( j)
i (1 − F( j)

i )


−1 n∑

i=1

X′i f ( j)
i (yi − F( j)

i )

F( j)
i (1 − F( j)

i )
,
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where F( j)
i = F(Xiβ

∗( j)) and f ( j)
i = f (Xiβ

∗( j)). Note that

I(β∗) = −E
(∂2 log L(β∗)

∂β∗∂β∗′
)

=

n∑

i=1

X′i Xi f 2
i

Fi(1 − Fi)
.

because of E(yi) = Fi.

It is known that

√
n(β̂∗ − β∗) −→ N

0, lim
n→∞

(
−1

n
E
(∂2 log L(β∗)

∂β∗∂β∗′
))−1 ,

where β̂∗ ≡ lim
j→∞

β∗( j) denotes MLE of β∗.

Practically, we use the following normal distribution:

β̂∗ ∼ N
(
β∗, I(β̂∗)−1

)
,

where I(β̂∗) = −E
(
∂2 log L(β̂∗)
∂β∗∂β∗′

)
=

n∑

i=1

X′i Xi f̂ 2
i

F̂i(1 − F̂i)
, f̂i = f (Xiβ̂

∗) and F̂i = F(Xiβ̂
∗).

Thus, the significance test for β∗ and the confidence interval for β∗ can be constructed.

37



Another Interpretation: This maximization problem is equivalent to the nonlin-

ear least squares estimation problem from the following regression model:

yi = F(Xiβ
∗) + ui,

where ui = yi − Fi takes ui = 1 − Fi with probability P(yi = 1) = F(Xiβ
∗) = Fi and

ui = −Fi with probability P(yi = 0) = 1 − F(Xiβ
∗) = 1 − Fi.

Therefore, the mean and variance of ui are:

E(ui) = (1 − Fi)Fi + (−Fi)(1 − Fi) = 0,

σ2
i = V(ui) = E(u2

i ) − (E(ui))2 = (1 − Fi)2Fi + (−Fi)2(1 − Fi) = Fi(1 − Fi).

The weighted least squares method solves the following minimization problem:

min
β∗

n∑

i=1

(yi − F(Xiβ
∗))2

σ2
i

.
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The first order condition is:

n∑

i=1

X′i f (Xiβ
∗)(yi − F(Xiβ

∗))
σ2

i

=

n∑

i=1

X′i fi(yi − Fi)
Fi(1 − Fi)

= 0,

which is equivalent to the first order condition of MLE.

Thus, the binary choice model is interpreted as the nonlinear least squares.

Prediction: E(yi) = 0 × (1 − Fi) + 1 × Fi = Fi ≡ F(Xiβ
∗).
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Example 2: Consider the two utility functions: U1i = Xiβ1+ε1i and U2i = Xiβ2+ε2i.

A linear utility function is problematic, but we consider the linear function for sim-

plicity of discussion.

We purchase a good when U1i > U2i and do not purchase it when U1i < U2i.

We can observe yi = 1 when we purchase the good, i.e., when U1i > U2i, and yi = 0

otherwise.

P(yi = 1) = P(U1i > U2i) = P(Xi(β1 − β2) > −ε1i + ε2i)

= P(−Xiβ
∗ < ε∗i ) = P(−Xiβ

∗∗ < ε∗∗i ) = 1 − F(−Xiβ
∗∗) = F(Xiβ

∗∗)

where β∗ = β1 − β2, ε∗i = ε1i − ε2i, β∗∗ =
β∗

σ∗
and ε∗∗i =

ε∗i
σ∗

.

We can estimate β∗∗, but we cannot estimate ε∗i and σ∗, separately.

Mean and variance of ε∗∗i are normalized to be zero and one, respectively.

If the distribution of ε∗∗i is symmetric, the last equality holds.
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We can estimate β∗∗ by MLE as in Example 1.

Example 3: Consider the questionnaire:

yi =


1, if the ith person answers YES,

0, if the ith person answers NO.

Consider estimating the following linear regression model:

yi = Xiβ + ui.

When E(ui) = 0, the expectation of yi is given by:

E(yi) = Xiβ.

Because of the linear function, Xiβ takes the value from −∞ to∞.
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However, E(yi) indicates the ratio of the people who answer YES out of all the people,

because of E(yi) = 1 × P(yi = 1) + 0 × P(yi = 0) = P(yi = 1).

That is, E(yi) has to be between zero and one.

Therefore, it is not appropriate that E(yi) is approximated as Xiβ.

The model is written as:

yi = P(yi = 1) + ui,

where ui is a discrete type of random variable, i.e., ui takes 1 − P(yi = 1) with

probability P(yi = 1) and −P(yi = 1) with probability 1 − P(yi = 1) = P(yi = 0).

Consider that P(yi = 1) is connected with the distribution function F(Xiβ) as follows:

P(yi = 1) = F(Xiβ),
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where F(·) denotes a distribution function such as normal dist., logistic dist., and so

on. −→ probit model or logit model.

The probability function of yi is:

f (yi) = F(Xiβ)yi(1 − F(Xiβ))1−yi ≡ Fyi
i (1 − Fi)1−yi , yi = 0, 1.

The joint distribution of y1, y2, · · ·, yn is:

f (y1, y2, · · · , yn) =

n∏

i=1

f (yi) =

n∏

i=1

Fyi
i (1 − Fi)1−yi ≡ L(β),

which corresponds to the likelihood function. −→ MLE
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