oooo

8. Weak Law of Large Numbers (I O O 0 0 00 ) — Review:

Suppose that X;, X5, - - -, X, are distributed.

Asn — o0, X —> lim E(X) under lim nV(X) < oo, which is called the

n—oo

weak law of large numbers.
— Convergence in probability

— Proved by Chebyshev’s inequality

(1) Suppose that X;, X;, ---, X, are assumed to be mutually independently
and identically distributed with E(X;) = u and V(X;) = 02 < o0.

Then,)_( — pasn — oo.

Note that E(X) = u and nV(X) = o2
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(ii)

(111)

Suppoose that X, X, - -+, X,, are assumed to be mutually independently
distributed with E(X;) = y; and V(X;) = o72.
Assume that

_ 1< _
(a) EX) = ‘Z“i — u,ie., limEX) = u
n i=1 e
and

_ 1 & _
(b) nV(X) = — Z 02 — 0% < o0, ie., limnV(X) = 0% < .
n n—o0

i=1

Then, X —> pan — oo,

Note that E(X) = ! Z w; and nV(X) = ! Z o?
n ' n v

i=1 i=1
Suppose that X;, X5, ---, X, are assumed to be serially correlated with

E(X,) = Uu; and COV(X[,XJ') = 0jj.

Assume that

21



— 1< S
(@ EX) =~ > i — pie, limEX) = p
n P n—o0
and

_ 1 & <& _
b) nV(X) = - i ? < oo, ie., lim nV(X) = 07 < co.
(b) VE) =~ > oy — o7 <eole, lim nV(X) = 07 < oo

i=1 j=1

Then, X —> pasn — oo,

. 1}1 . 1n n
NtthtEX = - i d VX = - iie
ote that E(X) n;,uann() nZZO'J

i=1 j=I
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0.

10.

Some Formulas of Expectaion and Variance in Multivariate Cases

— Review:
A vector of randam variavle X: E(X) =uand VIX) = E(X — )X -w)) =X

Then, E(AX) = Ay and V(AX) = AZA’.

Proof:
E(AX) = AE(X) = Au
V(AX) = E(AX - A)(AX — Ap)') = E(A(X — 1)(AX — ))’)
= E(AX - )X —p)'A") = AE((X — i)(X — ))A" = AV(X)A" = AXA’
Asymptotic Normality of MLE — Proof:
The density (or probability) function of X; is given by f(x;; 6).
The likelihood function is: L(6; x) = f(x;6) = [, f(x:;6),
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where x = (x1, X2, -+, Xp).

MLE of 6 results in the following maximization problem:

max log L(6; x).
0

A solution of the above problem is given by MLE of 6, denoted by 6.

That is, f is given by the  which satisfies the following equation:

dlog L(0; x) = dlog f(x;;6) 3
00 B Z 90 =0

i=1

01 i
06

the ith random variable, i.e., X; in the Central Limit Theorem II.

Replacing x; by the underlying random variable X;,
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Consider applying Central Limit Theorem II as follows:

dlog f(X,,e) 1 - dlog f(X;; 0) . _
Z E(; > T) 19log L(6;X) E(lalogL(Q, X))

i=1 _n 00 n 00
1 dlog f(X;;0) \/ 1 dlog L(6; X)
- e P v(——"277
Jm; J0) (12ee L)
Note that
i dlog f(X;;0) _ dlog L(6; X)
06 B 06

i=1
In this case, we need the following expectation and variance:
1 <\~ dlog f(X;;6) 1 dlog L(6; X)
E(- ) ———)=E(-———————) =0,
(n ; 00 ) (n 00 )
and

V(% Z c’)logf(Xi;H)) _ V(l 0log L(6; X)) 1 1(0).

00 n 00

i=1
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0log L(6; X)
00
Thus, the asymptotic distribution of

1dlogL(6; X) _ 1 an dlog f(X;;0)

0log L(6; X)

Note that E
ote a( 50

) = 0 and V( ) = 1(0).

n 00 n 4 06
is given by:
I dlog f(Xi36) (1 X dlog f(Xi; 6)
Z o) g(= Z e
\/ﬁ[n ; 00 (n ; 00 )
1 0log L(6; X) 1 0log L(6; X)
- \/_( a0 E(n a0 ))
1 dlog L(6; X)
=— z
i T NOD
where
1 - dlog f(X;;6) 1 = dlog f(X;; 0) _ 1 ,dlog L(6; X)
nV(n ; 00 ) - nV(; 00 ) B nV( 06 )
= 11(9) — .
n
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That is,
1 dlog L(6; X)

NAL

where X = (X1, X5, -+, X,).

— N(0,2),

Now, replacing 6 by 6, consider the asymptotic distribution of

b dlog L(6; X)
N 90 ’

which is expanded around 6 = 6 as follows:

1 dlog L(6; X) 1 010gL(9;X)+ 1 0*logL(6;X) -

0= 6—0).
N N N
Therefore,
1 logL(6;X) - 1 dlog L(6; X)
TR g~ T8RN N, 3).
i o O ET ©0.2)
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The left-hand side is rewritten as:

1 6*logL(6;X) - 1 8% log L(6; X)
e e

N )(9 ~9.

Then,

. 10%log L(9; X)\-1, 1 0log L(6; X)
Vil =0~ (=) (% )

—s N(,27'Ex7Y = N,Z7h).

Using the law of large number, note that

1 6% log L(6; X) o1 0% log L(6; X)
__Z P A lim = [-p(Z e =272/
N 0000  noen ( 5006 )
1 log L(0: X 1
= lim - (V(M)) — lim -1(6) = %,
n—oo N 0 n—oo N
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1.

16*log L(G; X)\-1, 1 dlog L(6; X
(_w) ](_w) has the same asymptotic distribu-

n 0006’ \n 00
. . 1 dlog L(8; X)
1
tion as X <_\/ﬁ B a— )

Optimization (OJ O [J ):
MLE of 6 results in the following maximization problem:

max log L(6; x).
0

‘We often have the case where the solution of 0 is not derived in closed form.

— Optimization procedure

0= dlog L(6;x) _ dlog L(6*; x) . 9% log L(6*; x)

90 96 aeoe 00

Solving the above equation with respect to 6, we obtain the following:

& log L(6";x)\ ' 8log L(6"; x)
0000’ 00 '

ezm—(
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Replace the variables as follows:

0 —> 9(i+1)’ 0* N 6(!)
Then, we have:
D) _ g0 0% log L(6Y; x) B dlog L(6"; x)
B 9000’ 90 '

— Newton-Raphson method (U O O OO OOOOOO)

0% log L(6; 0% log L(6;

0006 0006
timization algorithm:

), we obtain the following op-

girh — g (E (62 log L(Q(i); x) ))—1 dlog L(Q(i); x)

06000’ 00
. - (i) .
_ 0(1) + (1(9(1))) 1 810g g(g@ . x)

— Method of Scoring (I 0 0 0)
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2 Qualitative Dependent Variable (U U [0 [J [0 [)

1. Discrete Choice Model (U D OO OOO)
2. Limited Dependent Variable Model (I 0 OO OOOOO)

3. Count Data Model (U OO OOOON)

Usually, the regression model is given by:
yi = Xi3 + u, u; ~ N0, 07?), i=1,2,--,n,
where y; is a continuous type of random variable within the interval from —oco to co.

When y; is discrete or truncated, what happens?
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2.1 Discrete Choice Model (U OO OO OO)
2.1.1 Binary Choice Model (O OO OO0 0)
Example 1: Consider the regression model:
yi = XiB+ u;, u;j ~ (0,07), i=1,2,---,n,
where y is unobserved, but y; is observed as O or 1, i.e.,

1, ify: >0,
Yi=
0, if y? <0.
Consider the probability that y; takes 1, i.e.,
Py;=1)=P@y; >0)=Pu; > -XB) = P(u; >-X;°)=1-Pu; <-X)

=1-F(Xp) = F(X;8"), (f the dist. of u; is symmetric.),
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u.
where uf = =, and p* = B are defined.
o o
(*) B* can be estimated, but 8 and o cannot be estimated separately (i.e., 8 and o

are not identified).
The distribution function of u; is given by F(x) = f f(2)dz.

If u; is standard normal, i.e., u; ~ N(0, 1), we call probit model.

F(x) = fx (2m)~'/? CXP(—%ZZ)dZ, f(x) = Q2m)'? exp(—%xz).

If u? is logistic, we call logit model.

F(x) = ) = — 2P

1 +exp(—=x)’ (1 +exp(—=x))?

We can consider the other distribution function for u;.

33



Likelihood Function: y; is the following Bernoulli distribution:
f) = (P = DY'(P(y; = 0)' ™" = (FXB)"(1 = FXB)'™,  y=0,L

[Review — Bernoulli Distribution (O O O 0O 0O 0O)]
Suppose that X is a Bernoulli random variable. the distribution of X, denoted by f(x),
is:

f(x)=p*1-p', x=0,1.

The mean and variance are:
1

p=EX) =) xf(x)=0x(1-p)+1xp=p,
x=0

1

o =VX) =B(X -’ = Z(x —w’f(x) = (0= p>*(1 = p)+ (1 -p)’p=pd-p).
x=0

[End of Review]
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The likelihood function is given by:

n

LB") = fO1,y2, > Yn) = nf(y,-) = H(F(Xiﬁ*))”(l - F(X,8)'™,
i=1

i=1
The log-likelihood function is:

n

log L(B") = Yy (vilog F(X8") + (1 = y) log(1 = F(X8")).

i=1
Solving the maximization problem of log L(5*) with respect to S, the first order
condition is:
dlog L(B") _ Z":(in{f(Xiﬂ*) _da —yi)X{f(Xi,B*))
B G FXBY I~ F(XB")

_ Z Xf X0 - FXBY)) _ <h Xifi0i = F)
L FXB(1 - F(XiB)) & F(l-F)

i=1

=0,

where f; = f(Xif") and F; = F(X;5). Remember that f(x) = dfliX)'
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The second order condition is:

of; , O(fi — F)

P log L) _ X X’@,B . - X"f"a—ﬁ*

g & F(-F) & F(l-F)

A(F(1 — F))™!
X f(y; — F;
+Z = )=

N XX i -F) S X f(1 = 2F;)
_Z Fi(l1 -F)) F(I—F)+fol(yl F)(Fi(l_Fi))2

i=1

is a negative definite matrix.

For maximization, the method of scoring is given by:

ﬁ*(j+1) :B*(j) + —E(az log L(ﬁ*(j))) -1 dlog L(B"7)
opop*’ B

g [Z XX )“ X 0= )
- + . _ Ly
S RA-F)) G FA-F)
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where FY = F(X,8*?) and f = f(X,8D). Note that

Plog L)\ ~ XXif?
(L) - 5,

M= "R pap )= LFd-Fy

because of E(y;) = F

It 1s known that

0% log L(B")
VB - — N[O ,}Lm( nE(W)) ]

where 8* = lim 8 denotes MLE of j*.

J—)OO

Practically, we use the following normal distribution:

B~ NI,

9% log L(,@*)) - XXl zfAz

Thus, the significance test for 8 and the confidence interval for 5* can be constructed.

where I(3*) = —E( ﬁ f(X,B") and F; = F(X;8").
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Another Interpretation: = This maximization problem is equivalent to the nonlin-

ear least squares estimation problem from the following regression model:
yi = F(XiB") + w;,

where u; = y; — F; takes u; = 1 — F; with probability P(y; = 1) = F(X;8") = F; and
u; = —F; with probability P(y; =0) =1 - F(X;8)=1-F,.
Therefore, the mean and variance of u; are:

Ew)=(0-F)F;+(-F)(1-F;) =0,

o7 = V() = B@) = (Bw))* = (1 = F)’F; + (=F)*(1 = F;) = Fi(1 = F)).

The weighted least squares method solves the following minimization problem:

O-l

. i - FXBH))?
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The first order condition is:

Z": X fXip )i — FXB)) _ Z": X fivi—F)

i=1 ‘Ti2 i=1 Fi(l = Fy) -

which is equivalent to the first order condition of MLE.

Thus, the binary choice model is interpreted as the nonlinear least squares.

Prediction: E(y)=0x(-F;))+1xF;=F; = F(X;8).

39



Example 2:  Consider the two utility functions: U,; = X;8,+¢€; and U,; = X;5,+6;.
A linear utility function is problematic, but we consider the linear function for sim-
plicity of discussion.

We purchase a good when U,; > U,; and do not purchase it when Uy; < Uy;.

We can observe y; = 1 when we purchase the good, i.e., when U;; > U,;, and y; = 0

otherwise.

P(y; = 1) = P(Uy; > Uy) = P(Xi(B1 — B2) > —€1; + &)
=P(-Xf" <€)=P-Xp" <€")=1-F(=X") = FX7)

B a
where 8 =81 — B2, € =€ —€y, [ = e and € = oi*

We can estimate 5™, but we cannot estimate € and o, separately.

Mean and variance of €/ are normalized to be zero and one, respectively.

If the distribution of € is symmetric, the last equality holds.
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We can estimate 8** by MLE as in Example 1.

Example 3: Consider the questionnaire:

1, if the ith person answers YES,
Yi =
0, if the ith person answers NO.

Consider estimating the following linear regression model:
yi = Xi3 + u;.
When E(u;) = 0, the expectation of y; is given by:
E(y) = XiB.
Because of the linear function, X, takes the value from —oo to co.
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However, E(y;) indicates the ratio of the people who answer YES out of all the people,

because of E(y;)) = 1 X P(y; = 1) +0x P(y; =0) = P(y; = 1).

That is, E(y;) has to be between zero and one.

Therefore, it is not appropriate that E(y;) is approximated as X;8.

The model is written as:
yi=PQly;i=1)+u,

where u; is a discrete type of random variable, i.e., u; takes 1 — P(y; = 1) with

probability P(y; = 1) and —P(y; = 1) with probability 1 — P(y; = 1) = P(y; = 0).

Consider that P(y; = 1) is connected with the distribution function F(X;8) as follows:

P(y, = 1) = F(Xp).
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where F'(-) denotes a distribution function such as normal dist., logistic dist., and so

on. — probit model or logit model.

The probability function of y; is:
f) = FXBY (1 = FXiB)' ™ = FI'(1 - F)'™, yi=0,1.

The joint distribution of yy, y,, - -+, y, is:
Fouyn-y = [fon =] | Fia - Fy'2 = Lip),
i=1 i=1

which corresponds to the likelihood function. — MLE
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