Serially Correlated Errors (Time Series Data):

• Suppose that u_1, u_2, \dots, u_n are serially correlated.

Consider the case where the subscript represents time.

Remember that
$$\beta_{GMM} \sim N(\beta, \sigma^2(X'Z(Z'\Omega Z)^{-1}Z'X)^{-1}),$$

We need to consider evaluation of $\sigma^2 Z' \Omega Z = V(u^*)$, i.e.,

$$V(u^*) = V(Z'u) = V(\sum_{i=1}^n z_i'u_i) = V(\sum_{i=1}^n v_i)$$

$$= E((\sum_{i=1}^n v_i)(\sum_{i=1}^n v_i)') = E((\sum_{i=1}^n v_i)(\sum_{j=1}^n v_j)')$$

$$= E(\sum_{i=1}^n \sum_{j=1}^n v_i v_j') = \sum_{i=1}^n \sum_{j=1}^n E(v_i v_j')$$

where $v_i = z_i' u_i$ is a $r \times 1$ vector.

Define
$$\Gamma_{\tau} = E(v_i v'_{i,\tau})$$
.

$$\Gamma_0 = \mathrm{E}(v_i v_i')$$
 represents the $r \times r$ variance-covariance matrix of v_i .

$$\Gamma_{-\tau} = E(v_{i-\tau}v'_i) = E((v_iv'_{i-\tau})') = (E(v_iv'_{i-\tau}))' = \Gamma'_{\tau}.$$

$$V(u^*) = \sum_{i=1}^{n} \sum_{j=1}^{n} E(v_i v'_j)$$

$$= E(v_1v_1') + E(v_1v_2') + E(v_1v_3') + \cdots + E(v_1v_n')$$

+
$$E(v_2v_1')$$
 + $E(v_2v_2')$ + $E(v_2v_3')$ + \cdots + $E(v_2v_n')$

+
$$E(v_3v_1')$$
 + $E(v_3v_2')$ + $E(v_3v_3')$ + \cdots + $E(v_3v_n')$

:

+
$$E(v_nv'_1)$$
 + $E(v_nv'_2)$ + $E(v_nv'_3)$ + \cdots + $E(v_nv'_n)$

$$=\Gamma_0+\Gamma_{-1}+\Gamma_{-2}+\cdots+\Gamma_{1-n}$$

$$+ \Gamma_1 + \Gamma_0 + \Gamma_{-1} + \cdots + \Gamma_{2-n}$$

$$+ \Gamma_{2} + \Gamma_{1} + \Gamma_{0} + \cdots + \Gamma_{3-n}$$

$$\vdots$$

$$+ \Gamma_{n-1} + \Gamma_{n-2} + \Gamma_{n-3} + \cdots + \Gamma_{0}$$

$$= \Gamma_{0} + \Gamma'_{1} + \Gamma'_{2} + \cdots + \Gamma'_{n-1}$$

$$+ \Gamma_{1} + \Gamma_{0} + \Gamma'_{1} + \cdots + \Gamma'_{n-2}$$

$$+ \Gamma_{2} + \Gamma_{1} + \Gamma_{0} + \cdots + \Gamma'_{n-3}$$

$$\vdots$$

$$+ \Gamma_{n-1} + \Gamma_{n-2} + \Gamma_{n-3} + \cdots + \Gamma_{0}$$

$$= n\Gamma_{0} + (n-1)(\Gamma_{1} + \Gamma'_{1}) + (n-2)(\Gamma_{2} + \Gamma'_{2}) + \cdots + (\Gamma_{n-1} + \Gamma'_{n-1})$$

$$= n\Gamma_{0} + \sum_{i=1}^{n-1} (n-i)(\Gamma_{i} + \Gamma'_{i})$$

$$= n \Big(\Gamma_0 + \sum_{i=1}^{n-1} (1 - \frac{i}{n}) (\Gamma_i + \Gamma_i') \Big)$$
$$\approx n \Big(\Gamma_0 + \sum_{i=1}^{q} (1 - \frac{i}{q+1}) (\Gamma_i + \Gamma_i') \Big).$$

In the last line, n - 1 is replaced by q, where q < n - 1.

We need to estimate Γ_{τ} as: $\hat{\Gamma}_{\tau} = \frac{1}{n} \sum_{i=-1}^{n} \hat{v}_{i} \hat{v}'_{i-\tau}$, where $\hat{v}_{i} = z'_{i} \hat{u}_{i}$ for $\hat{u}_{i} = y_{i} - x_{i} \beta_{GMM}$.

As τ is large, $\hat{\Gamma}_{\tau}$ is unstable.

Therefore, we choose the q which is less than n-1.

Hansen's *J* **Test:** Is the model specification correct?

That is, is E(z'u) = 0 for $y = x\beta + u$ correct?

 H_0 : E(z'u) = 0 (The model is correct. Or, the instrumental variables are appropriate.)

 $H_1: E(z'u) \neq 0$

The number of equations is r, while the number of parameters is k.

The degree of freedom is r - k.

$$\Big(\frac{1}{\sqrt{n}}\sum_{i=1}^n z_i'\hat{u}_i\Big)'\Big(\mathbf{V}(\frac{1}{\sqrt{n}}\sum_{i=1}^n z_i\hat{u}_i)\Big)^{-1}\Big(\frac{1}{\sqrt{n}}\sum_{i=1}^n z_i'\hat{u}_i\Big) \longrightarrow \chi(r-k),$$

where $\hat{u}_i = y_i - x_i \beta_{GMM}$.

$$V(\frac{1}{n}\sum_{i=1}^{n}z_{i}'\hat{u}_{i})$$
 indicates the estimate of $V(\frac{1}{n}\sum_{i=1}^{n}z_{i}'u_{i})$ for $u_{i}=y_{i}-x_{i}\beta$.

The J test is called a test for over-identifying restrictions (過剰識別制約).

Remark 1: X_1, X_2, \dots, X_n are mutually independent.

 $X_i \sim N(\mu, \sigma^2)$ are assumed.

Consider
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
.

Then,
$$\frac{\overline{X} - E(\overline{X})}{\sqrt{V(\overline{X})}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1).$$

That is, $\sqrt{n}(\overline{X} - \mu) \longrightarrow N(0, \sigma^2)$.

Remark 2: X_1, X_2, \dots, X_n are mutually independent.

 $X_i \sim N(\mu, \sigma^2)$ are assumed.

Then,
$$\left(\frac{X_i - \mu}{\sigma^2}\right)^2 \sim \chi^2(1)$$
 and $\sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma^2}\right)^2 \sim \chi^2(n)$.

If μ is replaced by its estimator \overline{X} , then $\sum_{i=1}^{n} \left(\frac{X_i - \overline{X}}{\sigma^2}\right)^2 \sim \chi^2(n-1)$.

Note:

$$\sum_{i=1}^{n} \left(\frac{X_{i} - \overline{X}}{\sigma^{2}}\right)^{2} = \begin{pmatrix} X_{i} - \overline{X} \\ X_{i} - \overline{X} \\ \vdots \\ Y_{i} - \overline{Y} \end{pmatrix} \begin{pmatrix} \sigma^{2} & 0 \\ \sigma^{2} & \ddots \\ 0 & \sigma^{2} \end{pmatrix}^{-1} \begin{pmatrix} X_{i} - \overline{X} \\ X_{i} - \overline{X} \\ \vdots \\ Y_{i} - \overline{Y} \end{pmatrix} \sim \chi^{2}(n-1)$$

In the case of GMM,

$$\frac{1}{\sqrt{n}}\sum_{i=1}^n z_i'u_i \longrightarrow N(0,\Sigma),$$

where
$$\Sigma = V(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} z_i' u_i)$$
.

Therefore, we obtain: $\left(\frac{1}{\sqrt{n}}\sum_{i=1}^n z_i'u_i\right)'\Sigma^{-1}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^n z_i'u_i\right) \longrightarrow \chi^2(r)$.

In order to obtain \hat{u}_i , we have to estimate β , which is a $k \times 1$ vector.

Therefore, replacing u_i by \hat{u}_i , we have: $\left(\frac{1}{\sqrt{n}}\sum_{i=1}^n z_i'\hat{u}_i\right)'\Sigma^{-1}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^n z_i'\hat{u}_i\right) \longrightarrow \chi^2(r-k)$.

Moreover, from $\hat{\Sigma} \longrightarrow \Sigma$, we obtain: $\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} z_i' \hat{u}_i\right)' \hat{\Sigma}^{-1} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} z_i' \hat{u}_i\right) \longrightarrow \chi^2(r-k)$,

where $\hat{\Sigma}$ is a consistent estimator of Σ .

4.3 Generalized Method of Moments (GMM, 一般化積率法) II — Nonlinear Case —

Consider the general case:

$$E(h(\theta; w)) = 0,$$

which is the orthogonality condition.

A $k \times 1$ vector θ denotes a parameter to be estimated.

 $h(\theta; w)$ is a $r \times 1$ vector for $r \ge k$.

Let $w_i = (y_i, x_i)$ be the *i*th observed data, i.e., the *i*th realization of w.

Define $g(\theta; W)$ as:

$$g(\theta; W) = \frac{1}{n} \sum_{i=1}^{n} h(\theta; w_i),$$

where $W = \{w_n, w_{n-1}, \dots, w_1\}.$

 $g(\theta; W)$ is a $r \times 1$ vector for $r \ge k$.

Let $\hat{\theta}$ be the GMM estimator which minimizes:

$$g(\theta; W)'S^{-1}g(\theta; W),$$

with respect to θ .

• Solve the following first-order condition:

$$\frac{\partial g(\theta; W)'}{\partial \theta} S^{-1} g(\theta; W) = 0,$$

with respect to θ . There are r equations and k parameters.

Computational Procedure:

Linearizing the first-order condition around $\theta = \hat{\theta}$,

$$0 = \frac{\partial g(\theta; W)'}{\partial \theta} S^{-1} g(\theta; W)$$

$$\approx \frac{\partial g(\hat{\theta}; W)'}{\partial \theta} S^{-1} g(\hat{\theta}; W) + \frac{\partial g(\hat{\theta}; W)'}{\partial \theta} S^{-1} \frac{\partial g(\hat{\theta}; W)}{\partial \theta'} (\theta - \hat{\theta})$$

$$= \hat{D}' S^{-1} g(\hat{\theta}; W) + \hat{D}' S^{-1} \hat{D} (\theta - \hat{\theta}),$$

where $\hat{D} = \frac{\partial g(\hat{\theta}; W)}{\partial \Omega'}$, which is a $r \times k$ matrix.

Note that in the second term of the second line the second derivative is ignored and omitted.

Rewriting, we have the following equation:

$$\theta - \hat{\theta} = -(\hat{D}'S^{-1}\hat{D})^{-1}\hat{D}'S^{-1}g(\hat{\theta}; W).$$

Replacing θ and $\hat{\theta}$ by $\hat{\theta}^{(i+1)}$ and $\hat{\theta}^{(i)}$, respectively, we obtain:

$$\hat{\theta}^{(i+1)} = \hat{\theta}^{(i)} - (\hat{D}^{(i)}{}'S^{-1}\hat{D}^{(i)})^{-1}\hat{D}^{(i)}{}'S^{-1}g(\hat{\theta}^{(i)};W),$$

where
$$\hat{D}^{(i)} = \frac{\partial g(\hat{\theta}^{(i)}; W)}{\partial \theta'}$$
.

Given S, repeat the iterative procedure for $i = 1, 2, 3, \dots$, until $\hat{\theta}^{(i+1)}$ is equal to $\hat{\theta}^{(i)}$.

How do we derive the weight matrix *S*?

• In the case where $h(\theta; w_i)$, $i = 1, 2, \dots, n$, are mutually independent, S is:

$$\begin{split} S &= V\Big(\sqrt{n}g(\theta; W)\Big) = n\mathbb{E}\Big(g(\theta; W)g(\theta; W)'\Big) \\ &= n\mathbb{E}\Big(\Big(\frac{1}{n}\sum_{i=1}^n h(\theta; w_i)\Big)\Big(\frac{1}{n}\sum_{j=1}^n h(\theta; w_j)\Big)'\Big) = \frac{1}{n}\sum_{i=1}^n \sum_{j=1}^n \mathbb{E}\Big(h(\theta; w_i)h(\theta; w_j)'\Big) \\ &= \frac{1}{n}\sum_{i=1}^n \mathbb{E}\Big(h(\theta; w_i)h(\theta; w_i)'\Big), \end{split}$$

which is a $r \times r$ matrix.

Note that

(i)
$$E(h(\theta; w_i)) = 0$$
 for all i and accordingly $E(g(\theta; W)) = 0$,

(ii)
$$g(\theta; W) = \frac{1}{n} \sum_{i=1}^{n} h(\theta; w_i) = \frac{1}{n} \sum_{i=1}^{n} h(\theta; w_j),$$

(iii)
$$E(h(\theta; w_i)h(\theta; w_j)') = 0$$
 for $i \neq j$.

The estimator of S, denoted by \hat{S} is given by: $\hat{S} = \frac{1}{n} \sum_{i=1}^{n} h(\hat{\theta}; w_i) h(\hat{\theta}; w_i)' \longrightarrow S$.

• Taking into account serial correlation of $h(\theta; w_i)$, $i = 1, 2, \dots, n$, S is given by:

$$\begin{split} S &= \mathrm{V}\Big(\sqrt{n}g(\theta;W)\Big) = n\mathrm{E}\Big(g(\theta;W)g(\theta;W)'\Big) \\ &= n\mathrm{E}\Big(\Big(\frac{1}{n}\sum_{i=1}^n h(\theta;w_i)\Big)\Big(\frac{1}{n}\sum_{j=1}^n h(\theta;w_j)\Big)'\Big) = \frac{1}{n}\sum_{i=1}^n\sum_{j=1}^n\mathrm{E}\Big(h(\theta;w_i)h(\theta;w_j)'\Big). \end{split}$$

Note that $E(\sum_{i=1}^{n} h(\theta; w_i)) = 0$.

Define
$$\Gamma_{\tau} = \mathbb{E}(h(\theta; w_i)h(\theta; w_{i-\tau})') < \infty$$
, i.e., $h(\theta; w_i)$ is stationary.

Stationarity:

- (i) $E(h(\theta; w_i))$ does not depend on i,
- (ii) $E(h(\theta; w_i)h(\theta; w_{i-\tau})')$ depends on time difference τ .

$$\implies E(h(\theta; w_i)h(\theta; w_{i-\tau})') = \Gamma_{\tau}$$

$$S = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} E(h(\theta; w_i)h(\theta; w_j)')$$

$$= \frac{1}{n} \left(E(h(\theta; w_1)h(\theta; w_1)') + E(h(\theta; w_1)h(\theta; w_2)') + \cdots + E(h(\theta; w_1)h(\theta; w_n)') \right)$$

$$E(h(\theta; w_2)h(\theta; w_1)') + E(h(\theta; w_2)h(\theta; w_2)') + \cdots + E(h(\theta; w_2)h(\theta; w_n)')$$

$$\vdots$$

$$E(h(\theta; w_n)h(\theta; w_1)') + E(h(\theta; w_n)h(\theta; w_2)') + \cdots + E(h(\theta; w_n)h(\theta; w_n)')$$

$$= \frac{1}{n} (\Gamma_0 + \Gamma_1' + \Gamma_2' + \cdots + \Gamma_{n-1}')$$

$$\Gamma_1 + \Gamma_0 + \Gamma_1' + \cdots + \Gamma_{n-2}'$$

$$\vdots$$

$$\Gamma_{n-1} + \Gamma_{n-2} + \Gamma_{n-3} + \cdots + \Gamma_0$$

$$= \frac{1}{n} \Big(n\Gamma_0 + (n-1)(\Gamma_1 + \Gamma'_1) + (n-2)(\Gamma_2 + \Gamma'_2) + \cdots + (\Gamma_{n-1} + \Gamma'_{n-1}) \Big)$$

$$= \Gamma_0 + \sum_{i=1}^{n-1} \frac{n-i}{n} (\Gamma_i + \Gamma'_i) = \Gamma_0 + \sum_{i=1}^{n-1} \Big(1 - \frac{i}{n} \Big) (\Gamma_i + \Gamma'_i)$$

$$= \Gamma_0 + \sum_{i=1}^{q} \Big(1 - \frac{i}{q+1} \Big) (\Gamma_i + \Gamma'_i).$$

Note that
$$\Gamma'_{\tau} = \mathbb{E}(h(\theta; w_{i-\tau})h(\theta; w_i)') = \Gamma(-\tau)$$
, because $\Gamma_{\tau} = \mathbb{E}(h(\theta; w_i)h(\theta; w_{i-\tau})')$.

In the last line, n is replaced by q + 1, where q < n.

We need to estimate
$$\Gamma_{\tau}$$
 as: $\hat{\Gamma}_{\tau} = \frac{1}{n} \sum_{i=-1}^{n} h(\hat{\theta}; w_i) h(\hat{\theta}; w_{i-\tau})'$.

As τ is large, $\hat{\Gamma}_{\tau}$ is unstable.

Therefore, we choose the q which is less than n.

S is estimatated as:

$$\hat{S} = \hat{\Gamma}_0 + \sum_{i=1}^q \left(1 - \frac{i}{q+1}\right)(\hat{\Gamma}_i + \hat{\Gamma}'_i),$$

⇒ the Newey-West Estimator

Note that $\hat{S} \longrightarrow S$, because $\hat{\Gamma}_{\tau} \longrightarrow \Gamma_{\tau}$ as $n \longrightarrow \infty$.

Asymptotic Properties of GMM:

GMM is consistent and asymptotic normal as follows:

$$\sqrt{n}(\hat{\theta} - \theta) \longrightarrow N(0, (D'S^{-1}D)^{-1}),$$

where D is a $r \times k$ matrix, and \hat{D} is an estimator of D, defined as:

$$D = \frac{\partial g(\theta; W)}{\partial \theta'}, \qquad \hat{D} = \frac{\partial g(\hat{\theta}; W)}{\partial \theta'}.$$

Proof of Asymptotic Normality:

Assumption 1: $\hat{\theta} \longrightarrow \theta$

Assumption 2: $\sqrt{n}g(\theta; W) \longrightarrow N(0, S)$, i.e., $S = \lim_{n \to \infty} V(\sqrt{n}g(\theta; W))$.

The first-order condition of GMM is:

$$\frac{\partial g(\theta; W)'}{\partial \theta} S^{-1} g(\theta; W) = 0.$$

The GMM estimator, denote by $\hat{\theta}$, satisfies the above equation.

Therefore, we have the following:

$$\frac{\partial g(\hat{\theta}; W)'}{\partial \theta} \hat{S}^{-1} g(\hat{\theta}; W) = 0.$$

Linearize $g(\hat{\theta}; W)$ around $\hat{\theta} = \theta$ as follows:

$$g(\hat{\theta}; W) = g(\theta; W) + \frac{\partial g(\overline{\theta}; W)}{\partial \theta'} (\hat{\theta} - \theta) = g(\theta; W) + \overline{D}(\hat{\theta} - \theta),$$

where
$$\overline{D} = \frac{\partial g(\overline{\theta}; W)}{\partial \theta'}$$
, and $\overline{\theta}$ is between $\hat{\theta}$ and θ .

⇒ Theorem of Mean Value (平均値の定理)

Substituting the linear approximation at $\hat{\theta} = \theta$, we obtain:

$$0 = \hat{D}'\hat{S}^{-1}g(\hat{\theta}; W)$$

$$= \hat{D}'\hat{S}^{-1}\Big(g(\theta; W) + \overline{D}(\hat{\theta} - \theta)\Big)$$

$$= \hat{D}'\hat{S}^{-1}g(\theta; W) + \hat{D}'\hat{S}^{-1}\overline{D}(\hat{\theta} - \theta),$$

which can be rewritten as:

$$\hat{\theta} - \theta = -(\hat{D}'\hat{S}^{-1}\overline{D})^{-1}\hat{D}'\hat{S}^{-1}g(\theta; W).$$

Note that $\overline{D} = \frac{\partial g(\overline{\theta}; W)}{\partial \theta'}$, where $\overline{\theta}$ is between $\hat{\theta}$ and θ .

From Assumption 1, $\hat{\theta} \longrightarrow \theta$ implies $\overline{\theta} \longrightarrow \theta$ Therefore.

$$\sqrt{n}(\hat{\theta} - \theta) = -(\hat{D}'\hat{S}^{-1}\overline{D})^{-1}\hat{D}'S^{-1} \times \sqrt{n}g(\theta; W).$$

Accordingly , the GMM estimator $\hat{\theta}$ has the following asymptotic distribution:

$$\sqrt{n}(\hat{\theta} - \theta) \longrightarrow N(0, (D'S^{-1}D)^{-1}).$$

Note that $\hat{D} \longrightarrow D$, $\overline{D} \longrightarrow D$, $\hat{S} \longrightarrow S$ and Assumption 2 are utilized.

Computational Procedure:

- (1) Compute $\hat{S}^{(i)} = \hat{\Gamma}_0 + \sum_{i=1}^q \left(1 \frac{i}{q+1}\right)(\hat{\Gamma}_i + \hat{\Gamma}_i')$, where $\hat{\Gamma}_\tau = \frac{1}{n} \sum_{i=\tau+1}^n h(\hat{\theta}; w_i)h(\hat{\theta}; w_{i-\tau})'$. q is set by a researcher.
- (2) Use the following iterative procedure:

$$\hat{\theta}^{(i+1)} = \hat{\theta}^{(i)} - (\hat{D}^{(i)}{}'\hat{S}^{(i)-1}\hat{D}^{(i)})^{-1}\hat{D}^{(i)}{}'\hat{S}^{(i)-1}g(\hat{\theta}^{(i)};W).$$

(3) Repeat (1) and (2) until $\hat{\theta}^{(i+1)}$ is equal to $\hat{\theta}^{(i)}$.

In (2), remember that when S is given we take the following iterative procedure:

$$\hat{\theta}^{(i+1)} = \hat{\theta}^{(i)} - (\hat{D}^{(i)}'S^{-1}\hat{D}^{(i)})^{-1}\hat{D}^{(i)}'S^{-1}g(\hat{\theta}^{(i)}; W),$$

where $\hat{D}^{(i)} = \frac{\partial g(\hat{\theta}^{(i)}; W)}{\partial \theta'}$. S is replaced by $\hat{S}^{(i)}$.

• If the assumption $E(h(\theta; w)) = 0$ is violated, the GMM estimator $\hat{\theta}$ is no longer consistent.

Therefore, we need to check if $E(h(\theta; w)) = 0$.

From Assumption 2, note as follows:

$$J = \left(\sqrt{n}g(\hat{\theta}; W)\right)'\hat{S}^{-1}\left(\sqrt{n}g(\hat{\theta}; W)\right) \longrightarrow \chi^{2}(r-k),$$

which is called Hansen's J test.

Because of r equations and k parameters, the degree of freedom is given by r - k.

If J is small enough, we can judge that the specified model is correct.

Testing Hypothesis:

Remember that the GMM estimator $\hat{\theta}$ has the following asymptotic distribution:

$$\sqrt{n}(\hat{\theta} - \theta) \longrightarrow N(0, (D'S^{-1}D)^{-1}).$$

Consider testing the following null and alternative hypotheses:

- The null hypothesis: $H_0: R(\theta) = 0$,
- The alternative hypothesis: $H_1: R(\theta) \neq 0$,

where $R(\theta)$ is a $p \times 1$ vector function for $p \le k$.

p denotes the number of restrictions.

 $R(\theta)$ is linearized as: $R(\hat{\theta}) = R(\theta) + R_{\overline{\theta}}(\hat{\theta} - \theta)$, where $R_{\overline{\theta}} = \frac{\partial R(\overline{\theta})}{\partial \theta'}$, which is a $p \times k$ matrix.

Note that $\overline{\theta}$ is bewteen $\hat{\theta}$ and θ . If $\hat{\theta} \longrightarrow \theta$, then $\overline{\theta} \longrightarrow \theta$ and $R_{\overline{\theta}} \longrightarrow R_{\theta}$.

Under the null hypothesis $R(\theta) = 0$, we have $R(\hat{\theta}) = R_{\overline{\theta}}(\hat{\theta} - \theta)$, which implies that the distribution of $R(\hat{\theta})$ is equivalent to that of $R_{\overline{\theta}}(\hat{\theta} - \theta)$.

The distribution of $\sqrt{n}R(\hat{\theta})$ is given by:

$$\sqrt{n}R(\hat{\theta}) = \sqrt{n}R_{\overline{\theta}}(\hat{\theta} - \theta) \longrightarrow N(0, R_{\theta}(D'S^{-1}D)^{-1}R'_{\theta}).$$

Therefore, under the null hypothesis, we have the following distribution:

$$nR(\hat{\theta})(R_{\theta}(D'S^{-1}D)^{-1}R'_{\theta})^{-1}R(\hat{\theta})' \longrightarrow \chi^{2}(p).$$

Practically, replacing θ by $\hat{\theta}$ in R_{θ} , D and S, we use the following test statistic:

$$nR(\hat{\theta})(R_{\hat{\theta}}(\hat{D}'\hat{S}^{-1}\hat{D})^{-1}R_{\hat{\theta}}')^{-1}R(\hat{\theta})' \longrightarrow \chi^2(p).$$

⇒ Wald type test

Examples of $h(\theta; w)$:

1. **OLS**:

Regression Model: $y_i = x_i \beta + \epsilon_i$, $E(x_i' \epsilon_i) = 0$

 $h(\theta; w_i)$ is taken as:

$$h(\theta; w_i) = x_i'(y_i - x_i\beta).$$

2. IV (Instrumental Variable, 操作变数法):

Regression Model: $y_i = x_i \beta + \epsilon_i$, $E(x_i' \epsilon_i) \neq 0$, $E(z_i' \epsilon_i) = 0$

 $h(\theta; w_i)$ is taken as:

$$h(\theta; w_i) = z_i'(y_i - x_i\beta),$$

where z_i is a vector of instrumental variables.

When z_i is a $1 \times k$ vector, the GMM of β is equivalent to the instrumental variable (IV) estimator.

When z_i is a $1 \times r$ vector for r > k, the GMM of β is equivalent to the two-stage least squares (2SLS) estimator.

3. NLS (Nonlinear Least Squares, 非線形最小二乗法):

Regression Model: $f(y_i, x_i, \beta) = \epsilon_i$, $E(x_i' \epsilon_i) \neq 0$, $E(z_i' \epsilon_i) = 0$

 $h(\theta; w_i)$ is taken as:

$$h(\theta; w_i) = z_i' f(y_i, x_i, \beta)$$

where z_i is a vector of instrumental variables.