Serially Correlated Errors (Time Series Data):
e Suppose that u, u,, - - -, u, are serially correlated.

Consider the case where the subscript represents time.
Remember that Sy ~ N(B. o2(X'Z(Z'Q2)"'Z'X)™"),
We need to consider evaluation of 02Z’QZ = V(u*), i.e.,

V') = V(Z'u) = V(Zz ;) = V(Z V)
(Z v )(Z vY) = <Z v»(z v))
= E(Z Z vv)) = Z E(vv))
i=1 j=I

i=1 j=1

where v; = zlu; is a r X 1 vector.
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Define I'; = E(viv;_).
I'y = E(v;v}) represents the r X r variance-covariance matrix of v;.

I_, = (i) = B(0v,_,)) = (EGw)_)) =T

V") = i i E(viv))

=1 j=1
=EWv)) + Epv) + Evpvy) + -+ + E(vv)
+ E(v2v)) + Enov)) + E(vavy) + -+ + E(vov)

+ E(v3v)) + E(v3v}) + E(v3v5) + -+ + E(v3v))

+ E@W,v) + Evv) + Evvy) + -+ + E(vyv)

=TI+ +IT,+ -+ +1_,

+I+To+T 4+ - +1%,
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+I+ +Tg+ --- +175,

+0 0+, +10,53+ - +1

— / / /
|0+Il+|2+'“+|n—1
/ /

+I1+I0+Il+'”+|n—2

+ 0+ +T0+ - +17

+I,+1,0+0, 5+ -+ +1

=nlp+(n-DT+TD+n-2)T+T5)+ ---

n—1
= nly + Z(n — )T +T)
i=1
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n—1 .
l /
= n(Tp + ;(1 =T+ r))
N i
~ (Lo + ;(1 U ).
In the last line, n — 1 is replaced by g, where g < n — 1.

-7

A 1 <
1 . A A7 A A A
We need to estimate ['; as: I, = — E DAY where ¥; = z}#; for it; = y; — xiBomm-

i=T+1

As 7 is large, fT is unstable.

Therefore, we choose the g which is less than n — 1.
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Hansen’s J Test: s the model specification correct?

That is, is E(z'u) = 0 for y = x8 + u correct?

Hy : E(zZ’u) = 0 (The model is correct. Or, the instrumental variables are appropri-
ate.)

H,: EZu) #0

The number of equations is r, while the number of parameters is k.

The degree of freedom is r — k.

(% ; z;ai)’(V(% Zzia»)‘l(i .n i) — x(r=h),
Wherﬂi =yi — XiBoum-
V(% Zn: z.i1;) indicates the estimate of V(% i zu;) for u; = y; — x;B.

i=1 i=1

The J test is called a test for over-identifying restrictions (0 O O 0O O [0).
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Remark 1: X, X;,-- -, X, are mutually independent.
X; ~ N(u, o) are assumed.

_ 1<
Consider X = — ) X,.
onsiaer I’l;
X-EX) X-pu

’qu'lﬁwi

That is, Va(X — ) — N(0,0?).

— N(,1).

Remark 2: X, X;,-- -, X, are mutually independent.

X; ~ N(u, o) are assumed.
Then, (X2H) ~ 21y and Y (FSEY ~ )
Py

n

- X - X
If u is replaced by its estimator X, then Z(

i=1

151

=)~ -,



Note:

Xi—XY (07 0V'(X,-X
n Xl._YZ Xi_)_( 0'2 Xi_)_(
Z( 2 ) = : . . ~ x(n-1)
- 9 : - :

X,-x) Lo o2 X, - X
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In the case of GMM,
1 n
— > Zu; — N(0,%),
- Zl 0,%)

where X = V(L Zn: z;u,-).
n &

. 1 n , 1 n

Therefore, we obtain: (— Z z}ui) 2_1(— Z z}u,-) — XA().
Vn i=1 Vn i=

In order to obtain #;, we have to estimate 3, which is a k X 1 vector.

Therefore, replacing u; by ii;, we have: (% an z,’-iti)’Zl_l(L i zlfit,-) — )(2(r—k).

1 n
Moreover, from £ — X, we obtain: z” Z u —s Y (r—k),

where X is a consistent estimator of X.
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4.3 Generalized Method of Moments (GMM, O 0O OOO) II
— Nonlinear Case —

Consider the general case:

E(h(6;w)) = 0,

which is the orthogonality condition.

A k x 1 vector 6 denotes a parameter to be estimated.

h(6;w)is arx 1 vector for r > k.

Let w; = (i, x;) be the ith observed data, i.e., the ith realization of w.

Define g(6; W) as:
1 n
;W) =— h(6;w;),
2(0: W) "21 (6:w)

where W = {w,,w,_1,---, w1 }.

g(@; W)isarx 1 vector for r > k.
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Let 6 be the GMM estimator which minimizes:
gO; WYS~'g(0; W),

with respect to 6.

e Solve the following first-order condition:

00

with respect to 6.  There are r equations and k parameters.

S~lg(6; W) =0,

Computational Procedure:

Linearizing the first-order condition around 6 = 6,

g Wy .,
0=""""5"g@; W
50 gO; W)
ERCAS dg@: Wy _ dg@:; W) .
X o; 0—-6
S RB W) + =S T (0 - 6)

=D'S7'g@;W)+D'ST'D® - 0),
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L Ag(0; W)
0

where D = , which is a r X k matrix.

Note that in the second term of the second line the second derivative is ignored and
omitted.

Rewriting, we have the following equation:
0—0=—D'S'D)'D'S™ " g(@;W).
Replacing 6 and 8 by 87" and %, respectively, we obtain:

fi+D = g _ (PO =1 HDy-1 Hirg=1 @0, W,

N 020D W
where D = 9g0"; W)
60, Ay A
Given S, repeat the iterative procedure fori = 1,2, 3, - -, until 8V is equal to 6.

How do we derive the weight matrix S ?
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e In the case where h(0;w;),i = 1,2,---,n, are mutually independent, S is:
S = V(Vng(6; W)) = nE(g(6; W)g(6; WY )
= (2 D new)(E D nep)) = L
i=1 j=1

= % Z E(h(6; w)h(8; ;) ),

n E(h(0; w)h(8; w;))

n
i=1 j=1

which is a r X r matrix.
Note that
(i) E(h(6; wy) = 0 for all i and accordingly E(g(6; W)) = 0,

1 v 1 v
i) g@: W)=~ > h6:w) =~ > h@:w).
i=1 j=1

(iii) E(h(6; w)h(8;w;)) = 0 for i # j.
N . Il s R
The estimator of S, denoted by S is given by: § = — E h(@; w)Hh(O;w;)) — S.
n
i=1
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e Taking into account serial correlation of h(6; w;), i =1,2,---,n, S is given by:

S = V(Vng(6: W) = nE(g(6: W)g(6: WY )

- nE((% ZZ h(o w,-))(% Z e w)) ) = %
i= Jj=

” E(h(6; w)h(8; w,) ).

i=1 j=1
Note that E(Z h(8; ) = 0.
i=1
Define I'; = E(h(@; wi)h(6, wi_T)’) < 00, 1.e., h(B; w;) is stationary.
Stationarity:
1) E(h(@; w,-)) does not depend on i,

(i) E(h(@; wih(6; wi_T)’) depends on time difference 7.
= E(h(0: w)h(0: wi-r)') =T
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1
= (E(h(e;wl)h(e; wl)’)+E(h(0; w)h(8; wz)')+ +E(h(9;w1)h(0; wn)’)
(

E(h(0; w2)h(8; w1)') + B(h(0; wo)h(@; wa) ) + -+ + E(h(0; w2)h(6; w,)')

E(h(0: wa)h(8: w1 ) + B(h(0: w)h(0; w)' ) + -+ + E(h(8; w,)h(8; w,)))
:%(Fo +I7 +05 + - +T

n—1

r +Iy +I0 + -+,

Fn—l + Fn—2 + Fn—S + .- + F())
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= %(nro'l‘(n— DA +1—‘;)+(I’l—2)(l—‘2+r'2)+ coo + (T +1—~;1_1))

n—1 . n-1 :
=To+ Y ?(r,- +T) =To+ » (1- %)(D +T7)
i=1 i=1

q .
=T, + ;(1 - qﬁ)(ri +T)).
Note that I, = E(h(6; wi_r)h(6; w;)') = T(~7), because Iy = E(h(6; w)h(6; wi_.)').

In the last line, n is replaced by g + 1, where g < n.

A 1 © N N
We need to estimate I'; as: I, = — Z h(@; w)h(0; wi_,)'.
n

i=7+1
As 71is large, I'; is unstable.

Therefore, we choose the g which is less than n.
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S is estimatated as:

$ :f0+2(1—qi1)(ﬁ~+f;),

— the Newey-West Estimator

Note that § — S, because [, — T, asn — oo.

Asymptotic Properties of GMM:

GMM is consistent and asymptotic normal as follows:
V@ -6 — N(0.(D'ST'D)™),

where D is a r X k matrix, and D is an estimator of D, defined as:

_ 086, W)

9g(0; W)
o0 '

D
06’

. b=
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Proof of Asymptotic Normality:
Assumption 1: 6§ — 6

Assumption 2:  \ng(6; W) — N(O,S), ie., S = lim V( \ng(6; W)).

The first-order condition of GMM is:

ag(6; WY

S71e(0: W) = 0.
30 8( )

The GMM estimator, denote by 0, satisfies the above equation.
Therefore, we have the following:

g, WY o |
2§, W) = 0.
Y g, W)
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Linearize g(6; W) around 8 = 6 as follows:

aL;,W)@ —0) = g(6: W) + D@ - 0),

g@:w) =g W)+ 22 ;

— 0; —_ .
where D = % and 6 is between Hand 0.

=— Theorem of Mean Value (0 0 0O OO 0O)
Substituting the linear approximation at § = 6, we obtain:

0

D'S'g(6; W)

D'87'(g(6: W)+ D@ - 0))

D'S7'g6; W)+ D'S™'D6 - 0),
which can be rewritten as:
6-6=—-(D'S'D)y'D'S g6, W).

163



Note that D = dgLe,/W) where 6 is between  and 6.

From Assumption 1, § — 6 implies § — 6

Therefore,

V@ —6) = —(D’'S'D)'D’'S ' x \ng(6; W).

Accordingly , the GMM estimator 6 has the following asymptotic distribution:
V@ -6 — N(0.(D'ST'D)™).

Note that D — D, D — D, § — S and Assumption 2 are utilized.

164



Computational Procedure:

q . n
N A A A 1 N "
0 — L Ve SR o . WD WY
(1) Compute $@ = [+ 21 (1 = 1)(r,+ri), where I'. = - ,-;m h(@; wh(B; wi_,) .
q is set by a researcher.

(2) Use the following iterative procedure:
D = i _ (PO §O=1 HDy-1 i § D=1 gD, Wy,

(3) Repeat (1) and (2) until 87V is equal to §©.

In (2), remember that when § is given we take the following iterative procedure:

D = g _ (PO g=1 POy PHi g =160 Wy,

ag(@9; W)

where DO =
09

S is replaced by S .
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e If the assumption E(h(@; w)) = 0 is violated, the GMM estimator § is no longer

consistent.
Therefore, we need to check if E(h(@; w)) =0.
From Assumption 2, note as follows:
J = (Nng@;w)) 8 (Vng@:; W)) — x*(r— k),
which is called Hansen’s J test.
Because of r equations and k parameters, the degree of freedom is given by r — k.

If J is small enough, we can judge that the specified model is correct.
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Testing Hypothesis:

Remember that the GMM estimator 6 has the following asymptotic distribution:
Va@-6) — N(0,(D'ST'D)™).

Consider testing the following null and alternative hypotheses:
e The null hypothesis: Hy: R() =0,
e The alternative hypothesis: H; : R(6) # 0,

where R(6) is a p X 1 vector function for p < k.

p denotes the number of restrictions.

. . OR(
R(0) is linearized as: R(6) = R(6) + R5(6 — 6), where R; = %, whichisa p xk

matrix.
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Note that 6 is bewteen d and 6. If§ — 6,thenf — Hand R; — Ry.

Under the null hypothesis R(6) = 0, we have R(0) = Rg(@ — 6), which implies that the
distribution of R(9) is equivalent to that of Rg(@ - 0).
The distribution of vrR(#) is given by:

ViR(®) = VR0 - 0) — N(0.Ry(D'S™'D)'R;).
Therefore, under the null hypothesis, we have the following distribution:
) ra-Tm-1n\" prav 2
nRO)(R(D'S™'DY'R)) RO — x*(p).
Practically, replacing 6 by 8 in Ry, D and S, we use the following test statistic:
) A a1 A1 Y L orav 2
nRO(Ry(D'S™'DY'R)) RO — x*(p).
= Wald type test
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Examples of k(6; w):
1. OLS:
Regression Model:  y; = xf+¢€, E(xg)=0
h(6;w;) is taken as:
h(@; wi) = x;(vi = xiB).
2. IV (Instrumental Variable, 0 0 0O O O):
Regression Model:  y; = x8+¢, E(xg)#0, E(Zg) =0

h(6;w;) is taken as:
@, wi) = z;(vi — xiB),

where z; is a vector of instrumental variables.
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When z; is a 1 X k vector, the GMM of S is equivalent to the instrumental

variable (IV) estimator.
When z; is a 1 X r vector for r > k, the GMM of S is equivalent to the two-stage
least squares (2SLS) estimator.
. NLS (Nonlinear Least Squares, 0 0000 000):
Regression Model:  f(y;, xi,8) = €, E(x/g)#0, E(Zg) =0
h(6;w;) is taken as:
hO;w:) = zi f (vis X1, B)

where z; is a vector of instrumental variables.
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