
5.4 AR(p) model: Augmented Dickey-Fuller (ADF) Test

Consider the case where the error term is serially correlated.

Consider the following AR(p) model:

yt = φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt, εt ∼ iid(0, σ2
ε ),

which is rewritten as:

φ(L)yt = εt.

When the above model has a unit root, we have φ(1) = 0, i.e., φ1 + φ2 + · · · + φp = 1.

The above AR(p) model is written as:

yt = ρyt−1 + δ1∆yt−1 + δ2∆yt−2 + · · · + +δp−1∆yt−p+1 + εt,

where ρ = φ1 + φ2 + · · · + φp and δ j = −(φ j+1 + φ j+2 + · · · + φp).
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The null and alternative hypotheses are:

H0 : ρ = 1 (Unit root),

H1 : ρ < 1 (Stationary).

Use the t test, where we have the same asymptotic distributions.

We can utilize the same tables as before.

Choose p by AIC or SBIC.

Use N(0, 1) to test H0 : δ j = 0 against H1 : δ j , 0 for j = 1, 2, · · · , p − 1.

Reference

Kurozumi (2008) “Economic Time Series Analysis and Unit Root Tests: Develop-

ment and Perspective,” Japan Statistical Society, Vol.38, Series J, No.1, pp.39 – 57.

Download the above paper from:
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http://ci.nii.ac.jp/vol_issue/nels/AA11989749/ISS0000426576_ja.html

6 Bayesian Estimation

Bayes’ procedure is briefly discussed (see Zellner (1971), Bernardo and Smith (1994),

O’Hagan (1994), Hogg and Craig (1995) and so on for further discussion).

6.1 Elements of Bayesian Inference

When we have the random sample (X1, X2, · · · , Xn), consider estimating the unknown

parameter θ. The maximum likelihood estimator is introduced for estimation of the

parameter. Suppose that X1, X2, · · ·, Xn are mutually independently distributed and

Xi has a probability density function f (x; θ), where θ is the unknown parameter to be
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estimated. The joint density of X1, X2, · · ·, Xn is given by:

f (x1, x2, · · · , x3; θ) =

n∏

i=1

f (xi; θ),

which is called the likelihood function, denoted by l(θ) = f (x1, x2, · · · , xn; θ).

In Bayes’ estimation, the parameter is taken as a random variable, say Θ, where a

prior information on Θ is taken into account for estimation. The joint density function

(or the likelihood function) is regarded as the conditional density function of X1, X2,

· · ·, Xn given Θ = θ. Therefore, we write the likelihood function as the conditional

density f (x1, x2, · · · , xn|θ). The probability density function of Θ is called the prior

probability density function and given by fθ(θ). The conditional probability density

function, fθ|x(θ|x1, x2, · · · , xn), have to be obtained, which is represented as:

fθ|x(θ|x1, x2, · · · , xn) =
f (x1, x2, · · · , xn|θ) fθ(θ)∫
f (x1, x2, · · · , xn|θ) fθ(θ) dθ

∝ f (x1, x2, · · · , xn|θ) fθ(θ).
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The relationship in the first equality is known as Bayes’ formula. The conditional

probability density function of Θ given X1 = x1, X2 = x2, · · ·, Xn = xn, i.e., fθ|x(θ|x1,

x2, · · ·, xn), is called the posterior probability density function, which is propor-

tional to the product of the likelihood function and the prior density function.

6.1.1 Bayesian Point Estimate

Thus, the Bayesian approach yields the posterior probability density function for Θ.

To obtain a point estimate of Θ, we introduce a loss function, denoted by L(Θ, θ̂),

where θ̂ indicates a point estimate depending on X1 = x1, X2 = x2, · · ·, Xn = xn. Since

Θ is considered to be random, L(Θ, θ̂) is also random. One solution which yields

point estimates is to find the value of Θ that minimizes the mathematical expectation

of the loss function, i.e.,

min
θ̂

E
(
L(Θ, θ̂)

)
= min

θ̂

∫
L(θ, θ̂) fθ|x(θ|x1, x2, · · · , xn) dθ,
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where the absolute value of E
(
L(Θ, θ̂)

)
is assumed to be finite.

Now we specify the loss function as: L(Θ, θ̂) = (Θ − θ̂)′A(Θ − θ̂), which is called the

quadratic loss function, where A is a known nonstochastic positive definite sym-

metric matrix. Then, the solution gives us the posterior mean of Θ, i.e.,

θ̂ = E(Θ) =

∫
θ fθ|x(θ|x1, x2, · · · , xn) dθ.

An alternative loss function is given by: L(Θ, θ̂) = |Θ−θ̂|, which is called the absolute

error loss function, where both Θ and θ̂ are assumed to be scalars. Then, the median

of the posterior probability density function is an optimal point estimate of θ, i.e.,

θ̂ = median of the posterior probability density function.

We have shown two Bayesian point estimates. Hereafter, the quadratic loss function

is adopted for estimation. That is, the posterior mean of Θ is taken as the point

estimate.

216



6.1.2 Bayesian Interval for Parameter

Given that the posterior probability density function fθ|x(θ|x1, x2, · · · , xn) has been

obtained, it is possible to compute the probability that the parameter Θ lies in a par-

ticular subregion, R, of the parameter space. That is, we may compute the following

probability:

P(Θ ∈ R) =

∫

R
fθ|x(θ|x1, x2, · · · , xn) dθ.

When the above probability is set to be 1 − α, it is possible to find the region that

satisfies P(Θ ∈ R) = 1− α, which region is not necessarily unique. In the case where

Θ is a scalar, one possibility to determine the unique region R = {Θ|a < Θ < b} is to

obtain a and b by minimizing the distance b − a subject to
∫ b

a
fθ|x(θ|x1, x2, · · · , xn) dθ

= 1 − α. By solving this minimization problem, determining a and b such that
∫ b

a
fθ|x(θ|x1, x2, · · ·, xn) dθ = 1 − α and fθ|x(a|x1, x2, · · ·, xn) = fθ|x(b|x1, x2, · · ·, xn)

leads to the shortest interval with probability 1 − α.
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6.1.3 Prior Probability Density Function

We discuss a little bit about the prior probability density function. In the case where

we know any information about the parameter θ beforehand, the plausible estimate of

the parameter might be obtained if the parameter θ is estimated by including the prior

information. For example, if we know that Θ is normally distributed with mean θ0 and

variance Σ0, the prior density fθ(θ) is given by N(θ0,Σ0), where θ0 and Σ0 are known.

On the contrary, we have the case where we do not know any prior information about

the parameter θ. In this case, we may take the prior density as:

fθ(θ) ∝ constant,

where the prior density of Θ is assumed to be uniform, which prior is called the

improper prior, the noninformative prior, the flat prior or the diffuse prior. Then,
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the posterior density is given by:

fθ|x(θ|x1, x2, · · · , xn) ∝ f (x1, x2, · · · , xn|θ).

That is, the posterior density function is proportional to the likelihood function.

Example: Suppose that X1, X2, · · ·, Xn are mutually independently, identically and

normally distributed with mean µ and variance σ2. Then, the likelihood function is

given by:

f (x1, x2, · · · , xn|θ) =

n∏

i=1

f (xi; θ) =

n∏

i=1

(2πσ2)−1/2 exp
(
− 1

2σ2 (xi − µ)2
)

= (2πσ2)−n/2 exp
(
− 1

2σ2

n∑

i=1

(xi − µ)2
)
,

where θ indicates µ in this case. For simplicity of discussion, we assume that σ2 is

known. Therefore, we focus on µ.
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Now, we consider two prior density functions for µ. One is noninformative and

another is normal, i.e.,

(i) Noninformative Prior: fθ(µ) ∝ constant, where µ is uniformly distributed.

(ii) Normal Prior: fθ(µ) = (2πσ2
0)−1/2 exp

(
− 1

2σ2
0

(µ − µ0)2
)
, where µ0 and σ0 are

assumed to be known.

For each prior density, we obtain the posterior distributions as follows:

(i) When the prior density is noninformative, the posterior density function is:

fθ|x(µ|x1, x2, · · · , xn)

∝ f (x1, x2, · · · , xn|µ) = (2πσ2)−n/2 exp
(
− 1

2σ2

n∑

i=1

(xi − µ)2
)

= (2πσ2)−n/2 exp
(
− 1

2σ2

n∑

i=1

(xi − x)2 − 1
2σ2 n(x − µ)2

)
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= (2πσ2)−n/2 exp
(
− (n − 1)s2

2σ2 − 1
2σ2/n

(µ − x)2
)

∝ exp
(
− 1

2σ2/n
(µ − x)2

)

where x =
∑n

i=1 xi/n and s2 =
∑n

i=1(xi − x)2/(n− 1). Thus, the posterior density

of µ represents the normal distribution with mean x and variance σ2/n. Since

under the quadratic loss function the point estimate of µ is given by the poste-

rior mean, x gives us Bayes’ point estimate. The Bayesian interval estimate of

µ is: (x−zα/2σ/
√

n, x+zα/2σ/
√

n), because from the posterior density function

we have P
(∣∣∣∣ µ − x
σ/
√

n

∣∣∣∣ < zα/2
)

= 1 − α.

(ii) When the prior density is normal, the posterior density function is given by:

fθ|x(µ|x1, x2, · · · , xn)

∝ f (x1, x2, · · · , xn|µ) fθ(µ)
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= (2πσ2)−n/2 exp
(
− 1

2σ2

n∑

i=1

(xi − µ)2
)

×(2πσ2
0)−1/2 exp

(
− 1

2σ2
0

(µ − µ0)2
)

∝ exp
(
− 1

2σ2/n
(µ − x)2

)
× exp

(
− 1

2σ2
0

(µ − µ0)2
)

∝ exp
(
− 1

2

(σ2
0 + σ2/n

σ2
0σ

2/n

)(
µ − xσ2

0 + µ0σ
2/n

σ2
0 + σ2/n

)2
)
,

which indicates that the posterior density of µ is a normal distribution with

mean
xσ2

0 + µ0σ
2/n

σ2
0 + σ2/n

and variance
(σ2

0 + σ2/n

σ2
0σ

2/n

)−1
. The posterior mean is rewrit-

ten as:
xσ2

0 + µ0σ
2/n

σ2
0 + σ2/n

= xw + µ0(1 − w),

where w = σ2
0/(σ

2
0 + σ2/n). x is a maximum likelihood estimate of µ and µ0 is

a prior mean of µ. Thus, the posterior mean is the weighted average of x and
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µ0. As w −→ 1, i.e., as σ2
0 −→ ∞, the posterior mean approaches x, which is

equivalent to the posterior mean with the noninformative prior.

6.2 Sampling Methods
6.2.1 Gibbs Sampling

The Gibbs sampler shows how to generate random draws from the unconditional

densities under the situation that we can generate random draws from two conditional

densities.

Geman and Geman (1984), Tanner and Wong (1987), Gelfand, Hills, Racine-Poon

and Smith (1990), Gelfand and Smith (1990), Carlin and Polson (1991), Zeger and

Karim (1991), Casella and George (1992), Gamerman (1997) and so on developed

the Gibbs sampling theory. Carlin, Polson and Stoffer (1992), Carter and Kohn (1994,

1996) and Geweke and Tanizaki (1999, 2001) applied the Gibbs sampler to the non-
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linear and/or non-Gaussian state-space models. There are numerous other applica-

tions of the Gibbs sampler. The Gibbs sampling theory is concisely described as

follows.

We can deal with more than two random variables, but we consider two random vari-

ables X and Y in order to make things easier. Two conditional density functions,

fx|y(x|y) and fy|x(y|x), are assumed to be known, which denote the conditional distri-

bution function of X given Y and that of Y given X, respectively. Suppose that we

can easily generate random draws of X from fx|y(x|y) and those of Y from fy|x(y|x).

However, consider the case where it is not easy to generate random draws from the

joint density of X and Y , denoted by fxy(x, y). In order to have the random draws of

(X,Y) from the joint density fxy(x, y), we take the following procedure:

(i) Take the initial value of X as x−M.

(ii) Given xi−1, generate a random draw of Y , i.e., yi, from f (y|xi−1).
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(iii) Given yi, generate a random draw of X, i.e., xi, from f (x|yi).

(iv) Repeat the procedure for i = −M + 1,−M + 2, · · · , 1.

From the convergence theory of the Gibbs sampler, as M goes to infinity, we can

regard x1 and y1 as random draws from fxy(x, y), which is a joint density function of

X and Y . M denotes the burn-in period, and the first M random draws, (xi, yi) for

i = −M + 1,−M + 2, · · · , 0, are excluded from further consideration. When we want

N random draws from fxy(x, y), Step (iv) should be replaced by Step (iv)’, which is

as follows.

(iv)’ Repeat the procedure for i = −M + 1,−M + 2, · · · ,N.

As in the Metropolis-Hastings algorithm, the algorithm shown in Steps (i) – (iii) and

(iv)’ is formulated as follows:

fi(u) =

∫
f ∗(u|v) fi−1(v) dv.
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For convergence of the Gibbs sampler, we need to have the invariant distribution f (u)

which satisfies fi(u) = fi−1(u) = f (u). If we have the reversibility condition shown in

equation (3), i.e.,

f ∗(v|u) f (u) = f ∗(u|v) f (v),

the random draws based on the Gibbs sampler converge to those from the invariant

distribution, which implies that there exists the invariant distribution f (u). Therefore,

in the Gibbs sampling algorithm, we have to find the transition distribution, i.e.,

f ∗(u|v). Here, we consider that both u and v are bivariate vectors. That is, f ∗(u|v)

and fi(u) denote the bivariate distributions. xi and yi are generated from fi(u) through

f ∗(u|v), given fi−1(v). Note that u = (u1, u2) = (xi, yi) is taken while v = (v1, v2) =

(xi−1, yi−1) is set. The transition distribution in the Gibbs sampler is taken as:

f ∗(u|v) = fy|x(u2|u1) fx|y(u1|v2)
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Thus, we can choose f ∗(u|v) as shown above. Then, as i goes to infinity, (xi, yi) tends

in distribution to a random vector whose joint density is fxy(x, y). See, for example,

Geman and Geman (1984) and Smith and Roberts (1993).

Furthermore, under the condition that there exists the invariant distribution, the basic

result of the Gibbs sampler is as follows:

1
N

N∑

i=1

g(xi, yi) −→ E(g(x, y)) =

∫∫
g(x, y) fxy(x, y) dx dy, as N −→ ∞,

where g(·, ·) is a function.

The Gibbs sampler is a powerful tool in a Bayesian framework. Based on the condi-

tional densities, we can generate random draws from the joint density.

Remark 1: We have considered the bivariate case, but it is easily extended to the

multivariate cases. That is, it is possible to take multi-dimensional vectors for x and
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y. Taking an example, as for the tri-variate random vector (X,Y,Z), if we generate the

ith random draws from fx|yz(x|yi−1, zi−1), fy|xz(y|xi, zi−1) and fz|xy(z|xi, yi), sequentially,

we can obtain the random draws from fxyz(x, y, z).

Remark 2: Let X, Y and Z be the random variables. Take an example of the case

where X is highly correlated with Y . If we generate random draws from fx|yz(x|y, z),

fy|xz(y|x, z) and fz|xy(z|x, y), it is known that convergence of the Gibbs sampler is slow.

In this case, without separating X and Y , random number generation from f (x, y|z)

and f (z|x, y) yields better random draws from the joint density f (x, y, z).

6.2.2 Metropolis-Hastings Algorithm

This section is based on Geweke and Tanizaki (2003), where three sampling distri-

butions are compared with respect to precision of the random draws from the target

density f (x).
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The Metropolis-Hastings algorithm is also one of the sampling methods to generate

random draws from any target density f (x), utilizing sampling density f∗(x), even in

the case where it is not easy to generate random draws from the target density.

Let us define the acceptance probability by:

ω(xi−1, x∗) = min
( q(x∗)
q(xi−1)

, 1
)

= min
( f (x∗)/ f∗(x∗)

f (xi−1)/ f∗(xi−1)
, 1

)
,

where q(·) is defined as equation (??). By the Metropolis-Hastings algorithm, a ran-

dom draw from f (x) is generated in the following way:

(i) Take the initial value of x as x−M.

(ii) Generate x∗ from f∗(x) and compute ω(xi−1, x∗) given xi−1.

(iii) Set xi = x∗ with probability ω(xi−1, x∗) and xi = xi−1 otherwise.

(iv) Repeat Steps (ii) and (iii) for i = −M + 1,−M + 2, · · · , 1.
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In the above algorithm, x1 is taken as a random draw from f (x). When we want more

random draws (say, N), we replace Step (iv) by Step (iv)’, which is represented as

follows:

(iv)’ Repeat Steps (ii) and (iii) for i = −M + 1,−M + 2, · · · ,N.

When we implement Step (iv)’, we can obtain a series of random draws x−M, x−M+1,

· · ·, x0, x1, x2, · · ·, xN , where x−M, x−M+1, · · ·, x0 are discarded from further consider-

ation. The last N random draws are taken as the random draws generated from the

target density f (x). Thus, N denotes the number of random draws. M is sometimes

called the burn-in period.

We can justify the above algorithm given by Steps (i) – (iv) as follows. We show that

xi is the random draw generated from the target density f (x) under the assumption

xi−1 is generated from f (x). Let U be the uniform random variable between zero

and one, X be the random variable which has the density function f (x) and x∗ be
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