
y. Taking an example, as for the tri-variate random vector (X,Y,Z), if we generate the

ith random draws from fx|yz(x|yi−1, zi−1), fy|xz(y|xi, zi−1) and fz|xy(z|xi, yi), sequentially,

we can obtain the random draws from fxyz(x, y, z).

Remark 2: Let X, Y and Z be the random variables. Take an example of the case

where X is highly correlated with Y . If we generate random draws from fx|yz(x|y, z),

fy|xz(y|x, z) and fz|xy(z|x, y), it is known that convergence of the Gibbs sampler is slow.

In this case, without separating X and Y , random number generation from f (x, y|z)

and f (z|x, y) yields better random draws from the joint density f (x, y, z).

Example: X1, X2, · · ·, Xn are mutually independent with Xi ∼ N(µ, σ2).

Derive Bayesian estimation of µ and σ2.

Assume that the prior distributions: µ ∼ N(µ0, σ
2
0) and σ2 ∼ IG(α0, β0), i.e.,
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1
σ2 ∼ G(α0, β0).

(*) Note that the gamma distribution G(α, β) is given by:

f (x) =
1

βαΓ(α)
xα−1e−x/β

for x ≥ 0, α > 0 and β > 0. When X ∼ G(α, β) and Y =
1
X

, then Y ∼ IG(α, β).

the inverse gamma distribution is:

f (x) =
1

βαΓ(α)xα+1 exp(− 1
βx

)

The prior distribution of σ2 is:

f (σ2) =
1

βα0
0 Γ(α0)(σ2)α0+1

exp(− 1
βσ2 )
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Note that the posterior distributions are:

f (θ|x) =
f (x, θ)∫
f (x, θ)dθ

∝ f (x, θ)

∝


f (x, θ1|θ2) f (θ2) ∝ f (θ1|θ2, x)

f (x, θ2|θ1) f (θ1) ∝ f (θ2|θ1, x)

f (x, θ) = f (x, µ, σ2) = f (x|µ, σ2) f (µ) f (σ2)

= (2πσ2)−n/2 exp
(
− 1

2σ2

n∑

i=1

(xi − µ)2
)

× (2πσ2
0)−1/2 exp

(
− 1

2σ2
0

(µ − µ0)2
)

× 1
βα0

0 Γ(α0)(σ2)α0+1
exp(− 1

β0σ2 )
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The conditional distribution of µ given σ2 and x is:

f (µ|σ2, x) ∝ (2πσ2)−n/2 exp
(
− 1

2σ2

n∑

i=1

(xi − µ)2
)

× (2πσ2
0)−1/2 exp

(
− 1

2σ2
0

(µ − µ0)2
)

= (2πσ2)−n/2 exp
(
− 1

2σ2
(

n∑

i=1

(xi − x)2 + n(x − µ)2)
)

× (2πσ2
0)−1/2 exp

(
− 1

2σ2
0

(µ − µ0)2
)

∝ exp
(
− 1

2σ2/n
(µ − x)2

)
× exp

(
− 1

2σ2
0

(µ − µ0)2
)

∝ exp
(
−1

2

( 1
σ2/n

(µ2 − 2xµ) +
1
σ2

0

(µ2 − 2µ0µ)
))

We focus on the parenthesis in the exponential part.

1
σ2/n

(µ2 − 2xµ) +
1
σ2

0

(µ2 − 2µ0µ)
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= (
1

σ2/n
+

1
σ2

0

)(µ − xσ2
0 + µ0σ

2/n

σ2/n + σ2
0

)2
+ ...

That is,

µ|σ2, x ∼ N
( xσ2

0 + µ0σ
2/n

σ2/n + σ2
0

, (
1

σ2/n
+

1
σ2

0

)−1
)

The conditional distribution of σ2 given µ and x is:

f (σ2|µ, x) ∝ (2πσ2)−n/2 exp
(
− 1

2σ2

n∑

i=1

(xi − µ)2
)

× 1
βα0

0 Γ(α0)(σ2)α0+1
exp(− 1

β0σ2 )

∝ 1
(σ2)n/2+α0+1 exp

(
−(

1
2

n∑

i=1

(xi − µ)2 +
1
β0

)
1
σ2

)

which is IG
(n
2

+ α0, (
1
2

n∑

i=1

(xi − µ)2 +
1
β0

)−1
)
, i.e.,

1
σ2 |µ, x ∼ G

(n
2

+ α0, (
1
2

n∑

i=1

(xi − µ)2 +
1
β0

)−1
)
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6.2.2 Metropolis-Hastings Algorithm

This section is based on Geweke and Tanizaki (2003), where three sampling distri-

butions are compared with respect to precision of the random draws from the target

density f (x).

The Metropolis-Hastings algorithm is also one of the sampling methods to generate

random draws from any target density f (x), utilizing sampling density f∗(x), even in

the case where it is not easy to generate random draws from the target density.

Let us define the acceptance probability by:

ω(xi−1, x∗) = min
( q(x∗)
q(xi−1)

, 1
)

= min
( f (x∗)/ f∗(x∗)

f (xi−1)/ f∗(xi−1)
, 1

)
,

where q(·) is defined as equation (??). By the Metropolis-Hastings algorithm, a ran-

dom draw from f (x) is generated in the following way:

(i) Take the initial value of x as x−M.
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(ii) Generate x∗ from f∗(x) and compute ω(xi−1, x∗) given xi−1.

(iii) Set xi = x∗ with probability ω(xi−1, x∗) and xi = xi−1 otherwise.

(iv) Repeat Steps (ii) and (iii) for i = −M + 1,−M + 2, · · · , 1.

In the above algorithm, x1 is taken as a random draw from f (x). When we want more

random draws (say, N), we replace Step (iv) by Step (iv)’, which is represented as

follows:

(iv)’ Repeat Steps (ii) and (iii) for i = −M + 1,−M + 2, · · · ,N.

When we implement Step (iv)’, we can obtain a series of random draws x−M, x−M+1,

· · ·, x0, x1, x2, · · ·, xN , where x−M, x−M+1, · · ·, x0 are discarded from further consider-

ation. The last N random draws are taken as the random draws generated from the

target density f (x). Thus, N denotes the number of random draws. M is sometimes

called the burn-in period.
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We can justify the above algorithm given by Steps (i) – (iv) as follows. We show that

xi is the random draw generated from the target density f (x) under the assumption

xi−1 is generated from f (x). Let U be the uniform random variable between zero

and one, X be the random variable which has the density function f (x) and x∗ be

the realization (i.e., the random draw) generated from the sampling density f∗(x).

Consider the probability P(X ≤ x|U ≤ ω(xi−1, x∗)), which should be the cumulative

distribution of X, i.e., F(x). The probability P(X ≤ x|U ≤ ω(xi−1, x∗)) is rewritten as

follows:

P(X ≤ x|U ≤ ω(xi−1, x∗)) =
P(X ≤ x,U ≤ ω(xi−1, x∗))

P(U ≤ ω(xi−1, x∗))
,

where the numerator is represented as:

P(X ≤ x,U ≤ ω(xi−1, x∗)) =

∫ x

−∞

∫ ω(xi−1,t)

0
fu,∗(u, t) du dt

=

∫ x

−∞

∫ ω(xi−1,t)

0
fu(u) f∗(t) du dt =

∫ x

−∞

(∫ ω(xi−1,t)

0
fu(u) du

)
f∗(t) dt
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=

∫ x

−∞

(∫ ω(xi−1,t)

0
du

)
f∗(t) dt =

∫ x

−∞

[
u
]ω(xi−1,t)

0
f∗(t) dt

=

∫ x

−∞
ω(xi−1, t) f∗(t) dt =

∫ x

−∞

f∗(xi−1) f (t)
f (xi−1)

dt =
f∗(xi−1)
f (xi−1)

F(x)

and the denominator is given by:

P(U ≤ ω(xi−1, x∗)) = P(X ≤ ∞,U ≤ ω(xi−1, x∗)) =
f∗(xi−1)
f (xi−1)

F(∞) =
f∗(xi−1)
f (xi−1)

.

The density function of U is given by fu(u) = 1 for 0 < u < 1. Let X∗ be the random

variable which has the density function f∗(x). In the numerator, fu,∗(u, x) denotes the

joint density of random variables U and X∗. Because the random draws of U and

X∗ are independently generated, we have fu,∗(u, x) = fu(u) f∗(x) = f∗(x). Thus, the

first four equalities are derived. Substituting the numerator and denominator shown

above, we have the following equality:

P(X ≤ x|U ≤ ω(xi−1, x∗)) = F(x).
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Thus, the x∗ which satisfies u ≤ ω(xi−1, x∗) indicates a random draw from f (x). We

set xi = xi−1 if u ≤ ω(xi−1, x∗) is not satisfied. xi−1 is already assumed to be a random

draw from f (x). Therefore, it is shown that xi is a random draw from f (x). See

Gentle (1998) for the discussion above.

As a general formulation of the sampling density, instead of f∗(x), we may take the

sampling density as the following form: f∗(x|xi−1), where a candidate random draw

x∗ depends on the (i − 1)th random draw, i.e., xi−1.

For choice of the sampling density f∗(x|xi−1), Chib and Greenberg (1995) pointed

out as follows. f∗(x|xi−1) should be chosen so that the chain travels over the support

of f (x), which implies that f∗(x|i−1) should not have too large variance and too small

variance, compared with f (x). See, for example, Smith and Roberts (1993), Bernardo

and Smith (1994), O’Hagan (1994), Tierney (1994), Geweke (1996), Gamerman

(1997), Robert and Casella (1999) and so on for the Metropolis-Hastings algorithm.
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As an alternative justification, note that the Metropolis-Hastings algorithm is formu-

lated as follows:

fi(u) =

∫
f ∗(u|v) fi−1(v) dv,

where f ∗(u|v) denotes the transition distribution, which is characterized by Step (iii).

xi−1 is generated from fi−1(·) and xi is from f ∗(·|xi−1). xi depends only on xi−1, which

is called the Markov property. The sequence {· · ·, xi−1, xi, xi+1, · · ·} is called the

Markov chain. The Monte Carlo statistical methods with the sequence {· · ·, xi−1,

xi, xi+1, · · ·} is called the Markov chain Monte Carlo (MCMC). From Step (iii),

f ∗(u|v) is given by:

f ∗(u|v) = ω(v, u) f∗(u|v) +
(
1 −

∫
ω(v, u) f∗(u|v) du

)
p(u), (1)
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where p(x) denotes the following probability function:

p(u) =


1, if u = v,

0, otherwise.

Thus, x is generated from f∗(u|v) with probability ω(v, u) and from p(u) with prob-

ability 1 −
∫
ω(v, u) f∗(u|v) du. Now, we want to show fi(u) = fi−1(u) = f (u) as i

goes to infinity, which implies that both xi and xi−1 are generated from the invariant

distribution function f (u) for sufficiently large i. To do so, we need to consider the

condition satisfying the following equation:

f (u) =

∫
f ∗(u|v) f (v) dv. (2)

Equation (2) holds if we have the following equation:

f ∗(v|u) f (u) = f ∗(u|v) f (v), (3)
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which is called the reversibility condition. By taking the integration with respect to

v on both sides of equation (3), equation (2) is obtained. Therefore, we have to check

whether the f ∗(u|v) shown in equation (1) satisfies equation (3). It is straightforward

to verify that

ω(v, u) f∗(u|v) f (v) = ω(u, v) f∗(v|u) f (u),
(
1 −

∫
ω(v, u) f∗(u|v) du

)
p(u) f (v) =

(
1 −

∫
ω(u, v) f∗(v|u) dv

)
p(v) f (u).

Thus, as i goes to infinity, xi is a random draw from the target density f (·). If xi is

generated from f (·), then xi+1 is also generated from f (·). Therefore, all the xi, xi+1,

xi+2, · · · are taken as random draws from the target density f (·).
The requirement for uniform convergence of the Markov chain is that the chain

should be irreducible and aperiodic. See, for example, Roberts and Smith (1993).

Let Ci(x0) be the set of possible values of xi from starting point x0. If there exist two
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possible starting values, say x∗ and x∗∗, such that Ci(x∗) ∩ Ci(x∗∗) = ∅ (i.e., empty

set) for all i, then the same limiting distribution cannot be reached from both starting

points. Thus, in the case of Ci(x∗)∩Ci(x∗∗) = ∅, the convergence may fail. A Markov

chain is said to be irreducible if there exists an i such that P(xi ∈ C|x0) > 0 for any

starting point x0 and any set C such that
∫

C
f (x) dx > 0. The irreducible condition en-

sures that the chain can reach all possible x values from any starting point. Moreover,

as another case in which convergence may fail, if there are two disjoint set C1 and

C2 such that xi−1 ∈ C1 implies xi ∈ C2 and xi−1 ∈ C2 implies xi ∈ C1, then the chain

oscillates between C1 and C2 and we again have Ci(x∗) ∩ Ci(x∗∗) = ∅ for all i when

x∗ ∈ C1 and x∗∗ ∈ C2. Accordingly, we cannot have the same limiting distribution

in this case, either. It is called aperiodic if the chain does not oscillate between two

sets C1 and C2 or cycle around a partition C1, C2, · · ·, Cr of r disjoint sets for r > 2.

See O’Hagan (1994) for the discussion above.
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For the Metropolis-Hastings algorithm, x1 is taken as a random draw of x from f (x)

for sufficiently large M. To obtain N random draws, we need to generate M + N

random draws. Moreover, clearly we have Cov(xi−1, xi) > 0, because xi is generated

based on xi−1 in Step (iii).

Based on Steps (i) – (iii) and (iv)’, under some conditions the basic result of the

Metropolis-Hastings algorithm is as follows:

1
N

N∑

i=1

g(xi) −→ E(g(x)) =

∫
g(x) f (x) dx, as N −→ ∞,

where g(·) is a function, which is representatively taken as g(x) = x for mean and

g(x) = (x − x)2 for variance. x denotes x = (1/N)
∑N

i=1 xi. Thus, it is shown that

(1/N)
∑N

i=1 g(xi) is a consistent estimate of E(g(x)), even though x1, x2, · · ·, xN are

mutually correlated.

As an alternative random number generation method to avoid the positive correlation,
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we can perform the case of N = 1 as in the above procedures (i) – (iv) N times in par-

allel, taking different initial values for x−M. In this case, we need to generate M + 1

random numbers to obtain one random draw from f (x). That is, N random draws

from f (x) are based on N(1 + M) random draws from f∗(x|xi−1). Thus, we can ob-

tain mutually independently distributed random draws. For precision of the random

draws, the alternative Metropolis-Hastings algorithm should be similar to rejection

sampling. However, this alternative method is too computer-intensive, compared

with the above procedures (i) – (iii) and (iv)’, which takes more time than rejection

sampling in the case of M > NR.

Furthermore, the sampling density has to satisfy the following conditions: (i) we

can quickly and easily generate random draws from the sampling density and (ii)

the sampling density should be distributed with the same range as the target density.

See, for example, Geweke (1992) and Mengersen, Robert and Guihenneuc-Jouyaux
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(1999) for the MCMC convergence diagnostics. Since the random draws based on

the Metropolis-Hastings algorithm heavily depend on choice of the sampling density,

we can see that the Metropolis-Hastings algorithm has the problem of specifying

the sampling density, which is the crucial criticism. Several generic choices of the

sampling density are discussed by Tierney (1994) and Chib and Greenberg (1995).

We can consider several candidates for the sampling density f∗(x|xi−1), i.e., Sampling

Densities Iand II.

Sampling Density I (Independence Chain) For the sampling density, we have

started with f∗(x) in this section. Thus, one possibility of the sampling density is

given by: f∗(x|xi−1) = f∗(x), where f∗(·) does not depend on xi−1. This sampling

density is called the independence chain. For example, it is possible to take f∗(x) =

N(µ∗, σ2
∗), where µ∗ and σ2

∗ are the hyper-parameters. Or, when x lies on a certain
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interval, say (a, b), we can choose the uniform distribution f∗(x) = 1/(b − a) for the

sampling density.

Sampling Density II (Random Walk Chain) We may take the sampling density

called the random walk chain, i.e., f∗(x|xi−1) = f∗(x−xi−1). Representatively, we can

take the sampling density as f∗(x|xi−1) = N(xi−1, σ2
∗), where σ2

∗ denotes the hyper-

parameter. Based on the random walk chain, we have a series of the random draws

which follow the random walk process.
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