Fconometrics I TA Session

Wang Xin
Oct 23, 2023

1 Correction
We consider the simple regression model
Y =a+ BX; + u;

We assume u;| X; ~ N (0,02). As a consequence, the density is

1 u?
pu;e(ui|X¢) = mel?p (— 202) .
M, (0) = logpy(Yi, Xi) = Y logpe (Vi Xi) + > log ps(X:)
=1 =1 =1

= logps(Yi| X;)

=1

Since X; contains no information about the parameters. Thus is can be discarded.

2 MLE Estimation in R
We start with a multiple linear model with only 2 independent variables
yi = a+ Bz + Boio +ui uglx; ~ N(0,07)

where x; = (1,71, 742), and the parameters should be 8 = (a, 3, Ba, 02)
Now we generate some random values for the variables as the data set.

set .seed (243)

Nsim = 1074
alpha0 = 1
betal) = 2

10

11

12

13

14

15

16

17

18

19

20

10

11

beta20 = 3
sigma20 = 10 # set values of true parameters
theta0 = as.vector(c(alphaO, betalO, beta20, sigma20))

const = rep (1, Nsim)

x1 = rnorm (Nsim, mean = 5, sd = 1)
x2 = rnorm (Nsim, mean = 10, sd = 1)
u = rnorm (Nsim, mean = 0, sd = sqrt(sigma20))

y = alphaOxconst + betalOxx1 + beta20%x2 + u

y = as.vector(y)

const = as.vector (const)
xl = as.vector(x1)
x2 = as.vector(x2)
X = cbind (const, x1, x2)

In a way, the most important point is that whether the log likelihood function is
correctly written or not. Before entering this part, let’s review the log-likelihood function
of linear model. Suppose all conditions hold, especially, we assume that (y;, x;1, x;2) are
iid. Then the log-likelihood function should be written as

Ly —xp)(y - xp)

202

The equation in R language suppose to be

M,(0) = —g log(2m0?) —

Writing log—likelihood function

log likeli = function (para) {

n = nrow (X)

k = ncol(X)

beta = para|[l:k]

sigma2 = para[k+1]

R = —(n/2)*xlog(2«pixsigma2) — (1/(2xsigma2))x*t((y — X %% beta)

)
Yo% (y — XVox% beta)

In R, %*% means product between matrices(vectors)
return (R)

}

2.1 Estimating by ”optim” Function

In R, the default function to do minimization(maximization) is optim(optimize for one-
dimensional case), so insert the log-likelihood function into optim and don’t forget to

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

give the appropriate arguments.

Estimation by optim function
n = nrow (X)

k = ncol(X)

optil = optim(par = ¢(0 ,0 ,0 ,1), fn = log_likeli , control =
list (fnscale = —1), hessian = TRUE)

Default method is Nelder—Mead

For maximization, setting control = list (fnscale = —1)

(minimization is default)

hessian = TRUE means returning a numerically differentiated

hessian matrix.

Comparing the true parameter @, with the estimates, then we can find they are
approximately equal to each other.

> thetal

(1] 1 2 310

> optil

$par

[1] 1.098523 1.960113 3.012267 10.025663

$value

[1] —25724.5

$counts

function gradient
353 NA

$convergence

(1] ©
$message
NULL
$hessian

[, 1] [,2] [,3] [,4]
[1 ,] —9.974403e+02 —4.979533e+03 —9.993465¢+03 0.01228636
[2 ,] —4.979533e+03 —2.586452e+04 —4.989133e+04 0.19930576
[3 ,] —9.993465¢e+03 —4.989133e+04 —1.011206e+05 0.08225152
[4 ,] 1.228636e—02 1.993058e—01 &.225152e¢—02 —49.93094626

10

11

12

13

14

15

16

17

18

19

To calculate the empirical variance, one should not forget that the hessian here is the
SOC of criterion function, which is Fisher’s information matrix. Therefore, the variance
of each estimate should be the inverse of the elements on the diagonal.

diag(abs(solve (optilShessian))) # variance

| 0.1266031767 0.0009948923 0.0010050341 0.0200276680
diag (sqrt (abs(solve (optil$Shessian)))) # sd

| 0.35581340 0.03154191 0.03170227 0.14151914

2.2 Estimating by ”bbmle::mle2” Function

Various external packages are also provided to extend the calculating ability of program-
ming software. In R, package "bbmle” gathers tools for general maximum likelihood
estimation, and ”mle2” function is used to estimate MLE.

library (bbmle)

Attention : The objective of mle2 function is minus log—

likelihood function (minimizaiton), so we need to rewrite it
log likeli _2 = function (para) {

n = nrow (X)

k = ncol (X)

beta = para[l:k]
sigma2 = para[k+1]
R = —(n/2)*log(2+pixsigma2) — (1/(2x*sigma2))«t((y — X %% beta)

)
%% (y — X%x% beta)
return(—R)

}

Running mle2
parnames (log _likeli _2) = c¢(”alpha” ,”betal” ;”beta2” ,”sigma2”)
Assign names to” para”in log_likeli_2

opti2 = mle2(minuslogl = log_likeli _ 2, start = list (alpha = 0,
betal = 0, beta2 = 0, sigma2 = 1), vecpar = TRUE)

The results can be checked as

1 |> opti2@details
> |$par

'

© oo ~ (=] w

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

alpha betal beta?2 sigma?2
1.097025 1.958944 3.012995 10.044988

$value

[1] 25724.49

$counts

function gradient
87 23

$convergence

(1] ©
$message
NULL
$hessian

[,1] [,2] [,3]
[1,] 9.955213e+02 4.969953e+03 9.974238e+03
[2,] 4.969953e+4+03 2.581476e+04 4.979534e+04
[3,] 9.974238e+4+03 4.979534e+04 1.009261e+05
[4,] —8.776204e—03 —6.458085e—02 —1.191645e—01
$maxgrad
(1] 1.197005
$eratio

[1] 6.172317e—05

> summary (opti2)
Maximum likelihood estimation

Call:

[4]
—0.008776204
—0.064580850
—0.119164480
49.547960958

mle2 (minuslogl = log _likeli 2, start = list (alpha = 0, betal
= 0, beta2 = 0, sigma2 = 1), vecpar = TRUE)

Coefficients:

Estimate Std. Error z value Pr(z)
alpha 1.097025 0.356156 3.0802 0.002069
betal 1.958944 0.031572 62.0463 < 2.2e—16
beta2 3.012995 0.031733 94.9489 < 2.2¢—-16
sigma2 10.044988 0.142065 70.7070 < 2.2e—16

* %
%ok %
* ok %
* % ok

46

47

48

Signif. codes: 0 ‘“xxx’ 0.001 ‘xx> 0.01 ‘«” 0.05 <. 0.1 < 1

—2 log L: 51448.99

The standard errors and p values can also be checked by using summary func-
tion. Comparing standard errors derived by two functions, they are very close to each
other(standard errors from optim are a little bit smaller). And covariance can be ob-
tained either by function vcov or hessian in this case.

> diag(solve(opti2@details$hessian))

[1] 0.1268472289 0.0009968098 0.0010069714 0.0201824659
> diag(sqrt(abs(solve (opti2@details$hessian))))

[1] 0.35615619 0.03157229 0.03173281 0.14206501

3 Discrete Choice Model - Binary Model

A binary model focuses on the dependent variable y; which is equal to 1 or 0 exclusively,
considering the explanatory variable z;. Our approach will be to analyze each of them
in the general framework of probability models:

Py) = Py = 1" (1- Py = 1)

Discrete dependent-variable models are often cast in the form of index function models.
We view the outcome of a discrete choice as a reflection of an underlying regression,
which represented by an unobserved variable y* such that

yi=xB+e €~ (00
Then, the probability that y equals one is
Pyi=1)=P(y; >0) =P (e <x8) = F(x:3)

where F'(t) is the cdf of the random variable, ¢;. This provides an underlying structural
model for the probability.

The problem at this point is to devise a suitable model for the right-hand side of the
equation. One possibility is to retain the familiar linear regression,

Fxpy<<x0

The linear probability model has a number of shortcomings. A most serious flaw is that
without some ad hoc tinkering with the disturbances, we cannot be assured that the
predictions from this model will truly look like probabilities. We cannot constrain x;3
to the 0-1 interval.

The normal distribution has been used in many analyses, giving rise to the probit

model,
/ $(t)dt = D(x,f)

Partly because of its mathematical convenience, the logistic distribution,

exp (%)

Pl=0=1rc, (xiB)

A (x:8)

has also been used in many applications.
The probability of observing y; for an individual i can be written as

Py)=Pyi=1"(1-Py=1)"")
= F(x;B)" (1 - F(x;8))' "

which leads to the joint probability, or likelihood function

M (8) = log (H F(xiB)" (1 - F(xiﬁ))l_y’)

= Z Yi log Xzﬁ) (1 - yz) log (1 - F(Xzﬁ>>> :

The optimal 3 can be calculated when FOC of M, () equals 0. That is

M) B
98~ 20T paa i paay

