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1 Empirical Application of Binary Model: Titanic

Survivors

1.1 Background and Data

“Women and children first” is a behavioral norm, which women and children are saved
first in a life-threatening situation. This code was made famous by the sinking of the
Titanic in 1912. An empirical application investigates characteristics of survivors of
Titanic to answer whether crews obeyed the code or not.

We use an open data about Titanic survivors 1. Although this data set contains many
variables, we use only four variables: survived, age, fare, and sex. We summarize
descriptions of variables as follows:

• survived: a binary variable taking 1 if a passenger survived.

• age: a continuous variable representing passenger’s age.

• fare,: a continuous variable representing how much passenger paid.

• sex: a string variable representing passenger’s sex.

Instead of sex, we generate a dummy variable female, taking 1 if passenger is female,
in regression.

dt <- read.csv(

file = "./titanic.csv",

header = TRUE , sep = ",", row.names = NULL ,

stringsAsFactors = FALSE)

# set a gender dummy

dt$female <- ifelse(dt$sex == "female", 1, 0)

# delete the missing data

∗The codes are cited from document by Hiroki Kato.
1data source: https://www.kaggle.com/c/titanic/data
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dt <- subset(dt , !is.na(survived)&!is.na(age)&!is.na(fare)&!

is.na(female))

summary(dt)

survived sex age

Min. :0.0000 Length :714 Min. : 0.42

1st Qu .:0.0000 Class :character 1st Qu .:20.12

Median :0.0000 Mode :character Median :28.00

Mean :0.4062 Mean :29.70

3rd Qu .:1.0000 3rd Qu .:38.00

Max. :1.0000 Max. :80.00

fare female

Min. : 0.00 Min. :0.0000

1st Qu.: 8.05 1st Qu .:0.0000

Median : 15.74 Median :0.0000

Mean : 34.69 Mean :0.3655

3rd Qu.: 33.38 3rd Qu .:1.0000

Max. :512.33 Max. :1.0000

In this binary model, the outcome variable is survived. Explanatory variables are
age, fare, and sex. The probability function should be

P [survived = 1|female, age, fare] = F (β0 + β1female+ β2age+ β3fare).

1.2 Probit and Logit Model

Under probit or logit model, the MLE is widely used. Then our first step is to construct
criterion function.

The log-likelihood function of observation yi, conditionally on xi is

Mn(β) =
n∑

i=1

(yi log (F (xiβ)) + (1− yi) log (1− F (xiβ))) .

As a reminder, the probit model is

F (xiβ) = Φ(xiβ),

the logit model is

F (xiβ) ==
exp (xiβ)

1 + exp (xiβ)

In R, the function nlm() provides the Newton-Raphson algorithm to minimize the
function. To run this function, we need to define the log-likelihood function (M n) be-
forehand. Moreover, since we need to give initial values in augments, we use coefficients
estimated by OLS. Alternatively, we often use glm() (generalized linear model) func-
tion. It can unify various other statistical models, including linear regression, logistic
regression and Poisson regression. Using this function, we do not need to define the
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log-likelihood function and initial values, and estimates of glm() are approximate to
estimtaes of nlm(). In this case, both functions are displayed.

Let’s try the probit model first.

Y <- dt$survived
female <- dt$female; age <- dt$age; fare <- dt$fare
dt$"(Intercept)" <- 1

# log - likelihood

M_n <- function(beta , model = c("probit", "logit")) {

y <- beta [1]+ beta [2]*female + beta [3]*age + beta [4]*fare

if (model == "probit") {

L <- pnorm(y) # pnorm () generates a cdf of normal dist .

} else {

L <- 1/(1 + exp(-y))

}

LL_i <- Y * log(L) + (1 - Y) * log(1 - L)

LL <- -sum(LL_i)

return(LL)

}

# probit model

# Newton - Raphson

init <- c(0,0,0,0)

probit <- nlm(M_n, init , model = "probit", hessian = TRUE)

label <- c("(Intercept)", "factor(female)1", "age", "fare")

names(probit$estimate) <- label

colnames(probit$hessian) <- label; rownames(probit$hessian)
<- label

b_probit <- probit$estimate
vcov_probit <- solve(probit$hessian)
se_probit <- sqrt(diag(vcov_probit))

LL_probit <- -probit$minimum
# glm function

model <- survived ~ factor(female) + age + fare

probit_glm <- glm(model , data = dt, family = binomial("

probit"))

The logit model is also shown below.

# logit model

# Newton - Raphson

logit <- nlm(M_n, init , model = "logit", hessian = TRUE)

names(logit$estimate) <- label
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colnames(logit$hessian) <- label; rownames(logit$hessian) <-

label

b_logit <- logit$estimate
vcov_logit <- solve(logit$hessian)
se_logit <- sqrt(diag(vcov_logit))

LL_logit <- -logit$minimum
# glm function

logit_glm <- glm(model , data = dt , family = binomial("logit"

))

The results are summarized below. Both probit and logit models estimated by glm()

can be summarized directly by R, while the models estimated by nlm() can not. There-
fore we need to find the the standard deviation and P-value. The results of these two
estimates are summarized in Table 1.

> round(b_probit ,4)

(Intercept) factor(female)1 age fare

-0.8639 1.4340 -0.0058 0.0073

> summary(probit_glm)

Call:

glm(formula = model , family = binomial("probit"), data = dt)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.864022 0.133186 -6.487 8.74e-11 ***

factor(female)1 1.433964 0.111149 12.901 < 2e-16 ***

age -0.005843 0.003747 -1.560 0.119

fare 0.007347 0.001515 4.850 1.23e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘’. 0.1 ‘’ 1

...( Other info. is omitted)

> round(b_logit ,4)

(Intercept) factor(female)1 age fare

-1.4127 2.3476 -0.0106 0.0128

> summary(logit_glm)

Call:

glm(formula = model , family = binomial("logit"), data = dt)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.412758 0.230874 -6.119 9.41e-10 ***

factor(female)1 2.347599 0.189956 12.359 < 2e-16 ***

age -0.010570 0.006498 -1.627 0.104

fare 0.012773 0.002696 4.738 2.16e-06 ***

---
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...( Other info. is omitted)

# z - value

z_probit <- b_probit/se_probit

z_logit <- b_logit/se_logit

# Pr ( >| z |)

p_probit <- pnorm(abs(z_probit), lower = FALSE)*2

p_logit <- pnorm(abs(z_logit), lower = FALSE)*2

Table 1: nlm Results of Probit and Logit model

probit logistic

Female = 1 1.434∗∗∗ 2.348∗∗∗

(0.111) (0.190)
t = 12.917 t = 12.357
p = 0.000 p = 0.000

age −0.006 −0.011
(0.004) (0.006)

t = −1.588 t = −1.628
p = 0.113 p = 0.104

fare 0.007∗∗∗ 0.013∗∗∗

(0.001) (0.003)
t = 5.089 t = 4.717

p = 0.00000 p = 0.00001
Constant −0.864∗∗∗ −1.413∗∗∗

(0.132) (0.231)
t = −6.563 t = −6.115
p = 0.000 p = 0.000

Log-Likelihood -357.678 -358.035
Percent correctly predicted 0.7759 0.7773
Pseudo R-squared 0.5981 0.5978
Observations 714 714

1.3 Quick interpretation

In the linear probability model (which is rarely used in discrete choice model), interpre-
tations of coefficients are straight-forward. The coefficient β1 is the change in survival
probability given a one-unit increase in continuous variable x. In the case of discrete
variable, the coefficient β1 is the difference in survival probability between two groups.
However, when we use the probit or logit model, it is hard for us to interpret results
because the partial effect is not constant across other covariates. As an illustration, the
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partial effect of continuous variable age is

∂ageP [survived = 1|female, age, fare] =


ϕ(xiβ)β2 if probit

exp(−xiβ)

(1+exp(−xiβ))
2β2 if logit

The partial effect of dummy variable female is

P [survived = 1|female = 1, age, fare]− P [survived = 1|female = 0, age, fare]

=


Φ(β0 + β1female+ β2age+ β3fare)− Φ(β0 + β2age+ β3fare) if probit

Λ(β0 + β1female+ β2age+ β3fare)− Λ(β0 + β2age+ β3fare) if logit

where Λ(a) = 1/(1 + exp(−a)).
To interpret probit and logit model roughly, consider ‘average’ person with respect

to age and fare. Average age is about 29.7, and average fare is about 34.7. Then, the
survival probability of female is calculated as follows:

# probit

m_p <- b_probit [1] + 29.7*b_probit [3] + 34.7*b_probit [4]

female_p <- pnorm(m_p + b_probit [2]) - pnorm(m_p)

# logit

m_l <- b_logit [1] + 29.7*b_logit [3] + 34.7*b_logit [4]

female_l <- 1/(1 + exp(-(m_l + b_logit [2]))) - 1/(1 + exp(-m

_l))

> print("Probit: Diff of prob. between avg female and male")

; female_p

[1] "Probit: Diff of prob. between avg female and male"

(Intercept)

0.5256639

> print("Logit: Diff of prob. between avg female and male");

female_l

[1] "Logit: Diff of prob. between avg female and male"

(Intercept)

0.5265183

Above, this method only provides a quick explanation of the model. A more precise
interpretation named average marginal effect (AME) are also achievable by user-defined
function. We will see it if possible.

The coefficients I used to calculate the magnitude of effect shown above are from
nlm(), and they vary little between probit and logit model. The difference between
coefficients from probit and logit model is due to the different distribution functions
used. After transformation, they actually show similar partial effects.
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1.4 Model Fitness

There are two measurements of goodness-of-fit. First, the percent correctly predicted
reports the percentage of unit whose predicted ŷi matches the actual yi. The predicted
ŷi takes one if F (xiβ̂) > 0.5 , and takes zero if F (xiβ̂) ≤ 0.5.

# model fitness

X <- as.matrix(dt[,c("(Intercept)", "female", "age", "fare")

])

Xb_probit <- X %*% matrix(b_probit , ncol = 1)

Xb_logit <- X %*% matrix(b_logit , ncol = 1)

hatY_probit <- ifelse(pnorm(Xb_probit) > 0.5, 1, 0)

hatY_logit <- ifelse (1/(1 + exp(-Xb_logit)) > 0.5, 1, 0)

# percent correctly predicted

pcp_probit <- round(sum(Y == hatY_probit)/nrow(X), 4)

pcp_logit <- round(sum(Y == hatY_logit)/nrow(X), 4)

Second measurement is the pseudo R-squared. The pseudo R-squared is obtained
by1−

∑
i û

2
i /

∑
i ŷ

2
i , whereûi = ŷi − F (xiβ̂).

# pseudo R - squared

Y2 <- Y^2

hatu_probit <- (Y - pnorm(Xb_probit))^2

hatu_logit <- (Y - 1/(1 + exp(-Xb_logit)))^2

pr2_probit <- round (1 - sum(hatu_probit)/sum(Y2), 4)

pr2_logit <- round(1 - sum(hatu_logit)/sum(Y2), 4)

2 Empirical Application of Multinomial Model: Gen-

der Discrimination in Job Position

2.1 Background and Data

Recently, many developed countries move toward women’s social advancement, for ex-
ample, an increase of number of board member. In this application, we explore whether
the gender discrimination existed in the U.S. bank industry. Our hypothesis is that
women are less likely to be given a higher position than male.

We use a built-in data set called BankWages in the library AER. This data set contains
the following variables:

• job: three job position. The rank of position is custodial < admin < manage

• education: years of education

• gender: a dummy variable of female
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We begin with splitting data into two subsets: the training data and the test data.
The training data, which is used for estimation and model fitness, is randomly drawn
from the original data. The sample size of this subset is two thirds of total observations
of the original one (N = 316). The test data, which is used for model prediction, consists
of observations which the training data does not include (N = 158).

To use the multinomial logit model in R, we need to transform outcome variable
into the form factor, which is special variable form in R. The variable form factor
is similar to dummy variables. For example, factor(dt$job, levels = c("admin",

"custodial", "manage")) transforms the variable form job from the form character

as explanatory variables, R automatically makes two dummy variables of custodial

and manage.

library(AER)

data(BankWages)

dt <- BankWages

dt$job <- as.character(dt$job)
dt$job <- factor(dt$job , levels = c("admin", "custodial", "

manage"))

dt <- dt[,c("job", "education", "gender")]

# split data into training set and test set

set.seed (120511)

train_id <- sample (1: nrow(dt), size = (2/3)*nrow(dt),

replace = FALSE)

train_dt <- dt[train_id ,]; test_dt <- dt[-train_id ,]

summary(train_dt)

job education gender

admin :240 Min. : 8.00 male :178

custodial: 18 1st Qu .:12.00 female :138

manage : 58 Median :12.00

Mean :13.52

3rd Qu .:15.00

Max. :21.00

2.2 Model

The outcome variable yi takes three values 0, 1, 2. Note that the labelling of the choices
is arbitrary. Then, the multinomial logit model has the following response probabilities

Pij = P (yi = j|xi) =


exp(xiβj)

1+
∑2

k=1 exp(xiβk)
if j = 1, 2

1
1+

∑2
k=1 exp(xiβk)

if j = 0

,

and β0 = 0
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The log-likelihood function is

Mn(β1, β2) =
n∑

i=1

2∑
j=0

dij log(Pij).

where dij is a dummy variable taking 1 if yi = j.
In R, some packages provide the multinomial logit model. In this application, we use

the multinom function in the library nnet.

library(nnet)

est_mlogit <- multinom(job ~ education + gender , data =

train_dt)

Table 2: Multinomial Logit Model of Job Position

Dependent variable:

custodial manage

(1) (2)

Education −0.547∗∗∗ 1.322∗∗∗

(0.116) (0.229)

Female = 1 −10.507 −0.891∗

(31.352) (0.524)

Constant 4.634∗∗∗ −21.448∗∗∗

(1.269) (3.605)

Observations 316
Percent correctly predicted (in-sample) 0.839
Percent correctly predicted (out-of-sample) 0.88
Log-likelihood -102.964
Pseudo R-squared 0.523

2.3 Interpretaions and Model Fitness

Table 2 summarizes the result of multinomial logit model. The coefficient represents the
change of log(Pij/Pi0) in corresponding covariates because the response probabilities
yields

Pij

Pi0

= exp(xiβj) ⇔ log

(
Pij

Pi0

)
= xiβj
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For example, eduction decreases the log-odds between custodial and admin by
-0.547. This implies that those who received higher education are more likely to obtain
the position admin. Highly-educated workers are also more likely to obtain the position
manage. Moreover, a female dummy decrease the log-odds between manage and admin

by -0.891, which implies that females are less likely to obtain higher position manage.
From this result, we conclude that the U.S. bank discouraged females to assign higher
job position. Again, we still use pseudo R-squared and percent correctly predicted to
evaluate model fitness and prediction. The preudo R-sqaured is calculated by 1−L1/L0

where L1 is the value of log-likelihood for estimated model and L0 is the value of log-
likelihood in the model with only an intercept. Note that nnet:::logLik.multinom()
returns the value of log-likelihood.

loglik1 <- as.numeric(nnet ::: logLik.multinom(est_mlogit))

est_mlogit0 <- multinom(job ~ 1, data = train_dt)

loglik0 <- as.numeric(nnet ::: logLik.multinom(est_mlogit0))

# pseudo R - sqaured

pr2 <- round (1 - loglik1/loglik0 , 3)

The second index is the percent correctly predicted. The predicted outcome is the
outcome with the highest estimated probability. Using the training data (in-sample)
and the test data (out-of-sample), we calculate this index.

# in - sample prediction

inpred <- predict(est_mlogit , newdata = train_dt , "probs")

inpred <- colnames(inpred)[apply(inpred , 1, which.max)]

inpcp <- round(sum(inpred == train_dt$job)/length(inpred),
3)

# out -of - sample prediction

outpred <- predict(est_mlogit , newdata = test_dt , "probs")

outpred <- colnames(outpred)[apply(outpred , 1, which.max)]

outpcp <- round(sum(outpred == test_dt$job)/length(outpred),
3)

The fitness data along with coefficient results are summarized in Table 2. our model
is good in terms of fitness and prediction because the percent correctly predicted is high
(83.9% of in-sample data and 88.0% of out-of-sample data), and the pseudo R-sqaured
is 0.523.

10


