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1 Empirical Application of Truncated Regression:

Labor Participation of Married Women (1)

1.1 Background and Data

To develop women’s social advancement, we should create environment to keep a good
balance between work and childcare after marriage. In this application, using the data set
of married women, we explore how much childcare prevents married women to participate
in labor market.

Our data set originally comes from Stata sample data 1. This data set contains the
following variables:

• whrs: Hours of work. This outcome variable is truncated from below at zero.

• kl6: the number of preschool children

• k618: the number of school-aged children

• wa: age

• we: the number of years of education

∗The codes are cited from documents by Hiroki Kato.
1https://www.stata-press.com/data/r18/laborsub.dta
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library(haven)

dt <- read_dta(file = "./laborsub.dta")

dt <- dt[dt$lfp != 0, c("whrs","kl6","k618","wa","we")]

summary(dt)

whrs kl6 k618

Min. : 12 Min. :0.0000 Min. :0.000

1st Qu.: 645 1st Qu .:0.0000 1st Qu .:0.000

Median :1406 Median :0.0000 Median :1.000

Mean :1333 Mean :0.1733 Mean :1.313

3rd Qu .:1903 3rd Qu .:0.0000 3rd Qu .:2.000

Max. :4950 Max. :2.0000 Max. :8.000

wa we

Min. :30.00 Min. : 6.00

1st Qu .:35.00 1st Qu .:12.00

Median :43.50 Median :12.00

Mean :42.79 Mean :12.64

3rd Qu .:48.75 3rd Qu .:13.75

Max. :60.00 Max. :17.00

1.2 Model

As have reviewed, the truncated regression model is given as

yi = xiβ + ui if a1 < y < a2

where ui ∼ N(0, σ2), and the probability density function of yi is

pθ(yi|xi, a1 < y < a2) =
f(yi|xi)

P (a1 < y < a2|xi)

=

1
σ
ϕ

(
yi − xiβ

σ

)

Φ

(
a2 − xiβ

σ

)
− Φ

(
a1 − xiβ

σ

)
We still introduce MLE to estimate this model. Remind that the criterion function

is

Mn(θ) =
n∑

i=1

log pθ(yi|xi, a1 < y < a2).

In this case, we only observe the women participated in work. Thus, the selection
rule is as follows:

whrs = β1 + β2kl6+ β3k618+ β4wa+ β5we+ ui when whrs > 0
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We provide two ways to estimate truncated regression, using R. First way is to define
the log-likelihood function directly and minimize its function by nlm function. Recall
that nlm function provides the Newton method to minimize the function. We need to
give initial values in argument of this function. To set initial values, we assume that
coefficients of explanatory variables are zero. Then, we obtain yi|xi ∼ N(β1, σ

2). Thus,
the initial value of σ is the standard deviation of whrs, and we denote it as b[1], and
the initial value of β1 is the mean of whrs, denoted as b[2]. Note that these initial
values are not unbiased estimator.

# Newton method

whrs <- dt$whrs
kl6 <- dt$kl6; k618 <- dt$k618
wa <- dt$wa; we <- dt$we
LnLik <- function(b) {

sigma <- b[1]

xb <- b[2] + b[3]*kl6 + b[4]*k618 + b[5]*wa + b[6]*we

condp <- dnorm ((whrs - xb)/sigma)/(1 - pnorm(-xb/sigma))

# dnorm () generate a normal probability density function

LL_i <- log(condp/sigma)

LL <- -sum(LL_i)

return(LL)

}

init <- c(sd(whrs), mean(whrs), 0, 0, 0, 0)

est.LnLik <- nlm(LnLik , init , hessian = TRUE)

coef.LnLik <- est.LnLik$estimate
se.LnLik <- sqrt(diag(solve(est.LnLik$hessian)))

Second way is to use the function truncreg in the library truncreg. We must
specify the truncated point, using point and direction arguments. The point argument
indicates where the outcome variable is truncated. If direction = "left", the outcome
variable is truncated from below at point, that is, point < y. On the other hand, if
direction = "right", the outcome variable is truncated from above at point, that is,
y < point.

# package truncreg

library(truncreg)

model <- whrs ~ kl6 + k618 + wa + we

est.trunc <- truncreg(

model , data = dt, point = 0, direction = "left", method =

"NR")

se.trunc <- sqrt(diag(vcov(est.trunc)))
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Table 1: Truncated Regression: Labor Market Participation of Married Women

Truncated (truncreg) Truncated (nlm) OLS

#.Preschool Children −803.004∗∗ −803.032∗∗∗ −421.482∗∗

(321.361) (252.803) (167.973)

#.School-aged Children −172.875∗ −172.875∗ −104.457∗

(88.729) (100.590) (54.186)

Age −8.821 −8.821 −4.785
(14.368) (14.646) (9.691)

Education Years 16.529 16.529 9.353
(46.504) (46.430) (31.238)

Constant 1,586.260∗ 1,586.228∗ 1,629.817∗∗∗

(912.354) (932.878) (615.130)

Estimated Sigma 983.726 983.736
Log-Likelihood -1200.916 -1200.916
Observations 150 150 150

1.3 Interpretation and Model Fitness

Table 1 shows results of truncated regression estimated by two methods. As a compari-
son, we also show the OLS result in column (3).

ols <- lm(model , data = dt)

All specifications show that the number of preschool and school-aged children reduce
the hours of work. The magnitude of coefficient of the number of preschool and
school-aged children become stronger when we use the truncated regression. Note
that the size of coeffieient of #.Preschool Children estimated by truncreg is different
from the coefficient estimated by nlm.

2 Empirical Application of Censored Regression: La-

bor Participation of Married Women (2)

2.1 Background and Data

We continue to investigate the previous research question. We use data set coming
from same source as the previous one. Unlike the previous data set, we now observe
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married women who do not participate in the labor market (whrs = 0). Additionally,
we introduce the new variable:

• lfp: a dummy variable taking 1 if observed unit works.

The previous data set contains observations with lfp = 1. In this application, we
use observations with lfp = 0 to estimate the tobit model.

library(haven)

dt <- read_dta(file = "./laborsub.dta")

summary(dt)

lfp whrs kl6

Min. :0.0 Min. : 0.0 Min. :0.000

1st Qu.:0.0 1st Qu.: 0.0 1st Qu .:0.000

Median :1.0 Median : 406.5 Median :0.000

Mean :0.6 Mean : 799.8 Mean :0.236

3rd Qu.:1.0 3rd Qu .:1599.8 3rd Qu .:0.000

Max. :1.0 Max. :4950.0 Max. :3.000

k618 wa we

Min. :0.000 Min. :30.00 Min. : 5.00

1st Qu .:0.000 1st Qu .:35.00 1st Qu .:12.00

Median :1.000 Median :43.00 Median :12.00

Mean :1.364 Mean :42.92 Mean :12.35

3rd Qu .:2.000 3rd Qu .:49.00 3rd Qu .:13.00

Max. :8.000 Max. :60.00 Max. :17.00

2.2 Model

When the dependent variable is censored, values in a certain range are all transformed to
(or reported as) a single value. Conventional regression methods fail to account for the
qualitative difference between limit observations and nonlimit (continuous) observations.

In this case, we should use the tobit model, which is

yi =

{
xiβ + ui if y > a
a otherwise

where ui is usually assumed as in N(0, σ2).
The probability function of the censored yi is defined by

pβ,σ2(yi|xi) = Fy(a)
Iyi=af(yi|xi)

1−Iyi=a

where f(yi|xi) denotes the probability of yi in the whole interval conditionally on xi.
1[yi = 0] is an indicator function returing 1 if yi = 0.

In this case, a = 0, and the probability that yi is not greater than 0 should be:

F (yi ≤ 0) = F (ui ≥ xiβ) = 1− Φ

(
xiβ

σ

)
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Same as the probability density function we have derived in last week, that

f(yi|xi) =
1

σ
ϕ

(
yi − xiβ

σ

)
and the criterion function under iid assumption is derived as

Mn(β, σ
2) = log

n∏
i=1

(
1− Φ

(
xiβ

σ

))Iyi=0
(
1

σ
ϕ

(
yi − xiβ

σ

))1−Iyi=0

In R, there are two ways to implement the tobit regression. First way is to define
the log-likelihood function directly and minimize its function by nlm function. We need
to give intial values in argument of this function. To set initial values, we assume
coefficients of explanatory variables are zero. Then, we obtain yi|xi ∼ N(β1, σ

2) where
β1 is intercept of regression equation. Thus, the initial value of σ2, b[1] is the standard
deviation of whrs, and the initial value of β1, b[2] is the mean of whrs.

whrs <- dt$whrs
kl6 <- dt$kl6; k618 <- dt$k618
wa <- dt$wa; we <- dt$we

# Newton - Raphson method

LnLik <- function(b) {

sigma <- b[1]

xb <- b[2] + b[3]*kl6 + b[4]*k618 + b[5]*wa + b[6]*we

Ia <- ifelse(whrs == 0, 1, 0)

F0 <- 1 - pnorm(xb/sigma)

fa <- dnorm((whrs - xb)/sigma)/sigma

LL_i <- Ia * log(F0) + (1 - Ia) * log(fa)

LL <- -sum(LL_i)

return(LL)

}

init <- c(sd(whrs), mean(whrs), 0, 0, 0, 0)

est.LnLik <- nlm(LnLik , init , hessian = TRUE)

coef.tobitNLM <- est.LnLik$estimate
se.tobitNLM <- sqrt(diag(solve(est.LnLik$hessian)))

Second way is to use the function vglm in the library VGAM. First, we need to declare
the tobit distribution (tobit), using the family augment. The tobit function needs the
censored point (the value of a) in arguments Lower and Upper. When you specify Lower,
the observed outcome is left-censored. On the other hand, when you specify Upper, the
observed outcome is right-censored. In this application, we set Lower = 0.

# tobitVGAM function

library(VGAM)
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model <- whrs ~ kl6 + k618 + wa + we

tobitVGAM <- vglm(model , family = VGAM::tobit(Lower = 0),

data = dt)

coef.tobitVGAM <- coef(tobitVGAM)

coef.tobitVGAM [2] <- exp(coef.tobitVGAM [2])

se.tobitVGAM <- sqrt(diag(vcov(tobitVGAM)))[-2]

Table 2: Tobit Regression: Labor Market Participation of Married Women

Dependent variable:

whrs
Tobit (vglm) Tobit (nlm) OLS

(1) (2) (3)

#.Preschool Children −827.768∗∗∗ −827.733∗∗∗ −462.123∗∗∗

(218.507) (171.275) (124.677)

#.School-aged Children −140.017∗ −140.004∗∗ −91.141∗∗

(75.203) (69.379) (45.850)

Age −24.980∗ −24.973∗∗ −13.158
(13.217) (12.528) (8.335)

Education Years 103.694∗∗ 103.707∗∗ 53.262∗∗

(41.433) (41.780) (26.094)

Constant 588.961 588.488 940.059∗

(838.808) (812.625) (530.720)

Estimated Sigma 1309.928 1309.914
Log-Likelihood -1367.09 -1367.09
Observations 250 250 250

2.3 Interpretations

Table 2 shows results of tobit regression estimated by two methods. As a comparison, we
also show the OLS result in column (3). Although all specifications show the same sign
of coefficients, size of coefficients of censored regression becomes stronger than of OLSE.
As with the truncated regression, the number of preschool and school-aged children
reduces the hours of work. Unlike the truncated regression, the relationship between
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married women’s characteristics and labor participation is statistically significant. For
example, high educated women increases labor time.

ols <- lm(whrs ~ kl6 + k618 + wa + we , data =dt)

3 Empirical Application of Poisson Regression: De-

mand of Recreation

3.1 Background and Data

The Poisson distribution is used for drawing purchasing behavior. Especially, the pa-
rameter λ means that preference for goods because the expectation of frequency of
purchasing, E(X), is equal to λ (we omit proof here). For example, Tsuyoshi Morioka,
a famous marketer contributing the v-shaped recovery of Universal Studio Japan, insists
that marketers try to increase the parameter λ.

In this application, using cross-section data about recreational boating trips to Lake
Somerville, Texas, in 1980, we investigates who has a high preference for this area. We
use the built-in data set called RecreationDemand in the library AER. This data set is
based on a survey administered to 2,000 registered leisure boat owners in 23 counties in
eastern Texas. We use following four variables:

• trips: Number of recreational boating trips.

• income: Annual household income of the respondent (in 1,000 USD).

• ski: Dummy variable taking 1 if the individual was engaged in water-skiing at the
lake

• userfee: Dummy variable taking 1 if the individual payed an annual user fee at
Lake Somerville?

library(AER)

data(RecreationDemand)

dt <- RecreationDemand

dt <- dt[,c("trips", "ski", "income", "userfee")]

summary(dt)

trips ski income userfee

Min. : 0.000 no :417 Min. :1.000 no :646

1st Qu.: 0.000 yes :242 1st Qu .:3.000 yes: 13

Median : 0.000 Median :3.000

Mean : 2.244 Mean :3.853

3rd Qu.: 2.000 3rd Qu .:5.000

Max. :88.000 Max. :9.000

8



3.2 Model

Let independent variable yi be the number of recreational boating trips, trips. We
assume that this variable follows the Poisson distribution conditional covariates xi. That
is

p(yi|xi) =
exp(−λi)λ

yi
i

yi!

where λi = exp(xiβ). Importantly, λi represents the preference for boating trips because

E(yi|xi) = λi = exp(xiβ)

Assuming iid sample, the log-likelihood function is

Mn(β) =
n∑

i=1

(−λi + yi log(λi)− yi!) =
n∑

i=1

(− exp(xiβ) + yixiβ − yi!)

Since the first-order condition (orthogonality condition) is non-linear with respect to
β, we apply the Newton-Raphson method to obtain MLE. In R, there are two way to im-
plement the Poisson regression. First way is to define the log-likelihood function directly
and minimize its function by nlm function. We need to give intial values in argument of
this function. To set initial values, we assume that coefficients of explanatory variables
are zero. Then, we have E(yi|xi) = exp(β1) = E[yi] where β1 is intercept of regression
equation. Thus, the initial value of β1 , b[1] is logE[yi]. We replace the expectation of
yi by the mathematical mean of yi.

trips <- dt$trips
income <- dt$income
ski <- as.integer(dt$ski) - 1

userfee <- as.integer(dt$userfee) - 1

# nlm ()

LnLik <- function(b) {

xb <- b[1] + b[2]*income + b[3]*ski + b[4]*userfee

LL_i <- -exp(xb) + trips*xb - log(gamma(trips +1))

LL <- -sum(LL_i)

return(LL)

}

init <- c(log(mean(trips)), 0, 0, 0)

poissonMLE <- nlm(LnLik , init , hessian = TRUE)

coef.poissonMLE <- poissonMLE$estimate
se.poissonMLE <- sqrt(diag(solve(poissonMLE$hessian)))
logLik.poissonMLE <- -poissonMLE$minimum

The second way is to use glm function. To implement this function, we need to
specify the Poisson distribution, poisson() in the family augment. We can obtain the
value of log-likelihood function, using the logLik function.
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# glm ()

model <- trips ~ income + ski + userfee

poissonGLM <- glm(model , family = poisson (), data = dt)

logLik.poissonGLM <- as.numeric(logLik(poissonGLM))

Table 3: Poisson Regression: Recreation Demand

Dependent variable:

trips

(1) (2)

Income −0.146∗∗∗ −0.146∗∗∗

(0.017) (0.017)

1 = Playing water-skiing 0.547∗∗∗ 0.547∗∗∗

(0.055) (0.055)

1 = Paying annual fee 1.904∗∗∗ 1.904∗∗∗

(0.078) (0.078)

Constant 1.006∗∗∗ 1.006∗∗∗

(0.065) (0.065)

Method nlm glm
Log-Likelihood -2529.256 -2529.256
Observations 659 659

3.3 Interpretations

Table 3 shows results of the Poisson regression estimated by two methods, nlm and glm.
Clearly, the nlm methods (column 1) returns quite similar results to the glm method
(column 2). Surprisingly, we obtain the negative relationship between annual income
and preference for boating trips. This implies that high-earners are less likely to go to
Lake Somerville.
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