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1 Supplement of Panel Data

1.1 Panel Data

A panel data set, while having both a cross-sectional and a time series dimension, differs
in some important respects from an independently pooled cross section. To collect panel
data, also called longitudinal data, we follow (or attempt to follow) the same individuals
about the same variables across time.

In our class, we only consider balanced panels, which means that each individual in
the data set is observed the same number of times, usually denoted T .

Suppose that for each cross section unit, we observe data on the same set of variables
for n periods. Let Xit a 1×K vector, and β a K×1 vector. The model in the population
is

yit = Xitβ + uit

where yit and uit are scalars, i = 1, 2, . . . , n and t = 1, 2, . . . , T . This model is called
linear panel data model.

Before we start to perform estimation, we need to know some assumptions at first:

• Contemporaneous exogeneity assumption: E[uit|Xit] = 0, ∀ i, t

• Strict exogeneity assumption: E[uit|Xi1,Xi2, . . . ,XiT ] = 0

Contemporaneous exogeneity assumption places no restrictions on the relationship be-
tween Xis and uit for s ̸= t. Strict exogeneity assumption implies that each uit is
uncorrelated with the explanatory variables in all time periods.

Reformulate the panel model as the following regression system:

yi = Xiβ + ui (1)

where Xi = (X′
i1,X

′
i2, . . . ,X

′
iT )

′ is a T × K matrix, yi = (yi1, yi2, . . . , yiT )
′ and ui =

(ui1, ui2, . . . , uiT )
′ are T × 1 vectors.

∗Cited from documents by Professor Poignard.
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1.2 Pooled OLS

Still consider the model in Eq(1), before we can apply OLS estimation, there are two
assumptions we need to establish:

• ∀ i, t E[X′
ituit] = 0. Under this assumption, we have the orthogonality condition

∀ i, t E[X′
it(yit −Xitβ)] = 0.

• E[X′
iXi] ≻ 0, which means a positive definite matrix.

Then the OLS estimator is

β̂ =

(
n∑

i=1

X′
iXi

)−1( n∑
i=1

X′
iyi

)
=

(
n∑

i=1

T∑
t=1

X′
itXit

)−1( n∑
i=1

T∑
t=1

X′
ityit

)

This estimator in the context of panel data is called pooled OLS.

1.3 Generalized Least Squares Estimation

In above model, we actually didn’t take heteroskedasticity with respect to errors into
account, which is quite common in panel data. To obtain consistent estimaors, we
introduce the generalized least squares (GLS) analysis.

Define the variance of error term as a T × T matrix Ω = E[uiu
′
i]. Then the assump-

tions can be rewritten as:

• E[Xi ⊗ ui] = 0. This assumption is actually more strict than the assumption for
Pooled OLS. This assumption implies that E[X′

iΩ
−1ui] = 0.

• Ω ≻ 0 and E[X′
iΩ

−1Xi] ≻ 0

By GLS method we obtain,

β̂GLS =

(
n∑

i=1

X′
iΩ

−1Xi

)−1( n∑
i=1

X′
iΩ

−1yi

)

In full matrix notation, it is given by

β̂GLS =
{
X′(In ⊗ Ω−1)X

}−1 {
X′(In ⊗ Ω−1)y

}
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2 Review of Individual effect

We previously assumed the so-called exogeneity assumption. This hypothesis is actually
too strong for certain panel data. In fact, a primary motivation for using panel data is
to solve the omitted variables problem.

Consider yit andXit be observable random variables and vi an unobservable random
variable.

yit = Xitβ + vi + uit (2)

There are K regressors in Xit, not including a constant term. The heterogeneity, or
individual effect is a scalar, vi, where vi contains a constant term and a set of individual
or group-specific variables, which may be observed, such as race, sex, location, and so
on, or unobserved, such as family specific characteristics, individual heterogeneity in
skill or preferences, and so on, all of which are taken to be constant over time t.

The key assumption for individual effect, both fixed effect and random effect, is the
strict exogeneity assumption on the explanatory variables:

• A.1 E[uit|Xi1,Xi2, . . . ,XiT , vi] = 0

2.1 Fixed effect model

In the fixed effect framework, vi is not treated as non-random; rather, it means that one
is allowing for arbitrary dependence between the unobserved effect vi and the observed
explanatory random variables. In short, vi is correlated with Xit, then the least squares
estimator of β is biased and inconsistent as a consequence of an omitted variable.

An alternative notation of OLS estimation of fixed effect model is displayed below,
if you find the Kronecker product difficult.

Rewrite the model (2) as

yi = Xiβ + 1Tvi + ui (3)

with where Xi = (X′
i1,X

′
i2, . . . ,X

′
iT )

′ is a T × K matrix, Xit is a 1 × K vector, yi =
(y′

i1,y
′
i2, . . . ,y

′
iT )

′, ui = (u′
i1,u

′
i2, . . . ,u

′
iT )

′ and 1T = (1, 1, . . . , 1)′ are T × 1 vectors.
The main idea for estimating β under A.1 is to transform the equations to eliminate

the unobserved effect vi. Average the model (3) over time, we have

ȳi = X̄iβ + 1Tvi + ūi (4)

where ȳi =
1
T

∑T
t=1 yit, X̄i =

1
T

∑T
t=1Xit and ūi =

1
T

∑T
t=1 uit.

vi can be eliminated by subtracting Eq(4) from Eq(3), and remains

ÿi = Ẍiβ + üi

where ÿi = yi − ȳi, Ẍi = Xi − X̄i and üi = ui − ūi.
In order to ensure that asymptotically the FE estimator is well behaved, we make a

standard rank condition:
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• FE2 rank
(∑T

t=1E[Ẍ
′
itẌit]

)
= rank

(
E[Ẍ

′
iẌi]

)
= K

The FE estimator is the pooled OLS estimator from the regression ÿi on Ẍi, which
is

β̂FE =

(
n∑

i=1

Ẍ
′
iẌi

)−1( n∑
i=1

Ẍ
′
iÿi

)
=

(
n∑

i=1

T∑
t=1

Ẍ
′
itẌit

)−1( n∑
i=1

T∑
t=1

Ẍ
′
itÿit

)

2.2 Random effect Model

A random effect is synonymous with zero correlation between the observed explanatory
random variables and the unobserved effect

Cov(Xit, vi) = 0,

Along with A.1, the assumption can be restate as

• RE1 E[uit|Xi1,Xi2, . . . ,XiT , vi] = 0 and E[vi|Xi1,Xi2, . . . ,XiT ] = 0

In the random effect method, the variable vi can be put into the error term, which is

yi = Xiβ + ϵi, with ϵi = 1Tvi + ui

and E[ϵit|Xi1,Xi2, . . . ,XiT ] = 0
We define the variance covariance matrix as Ω = E[ϵiϵ

′
i] ≻ 0

In addition, we assume

• RE2 rank (E[X′
iΩ

−1Xi]) = K

• RE3 E[uiu
′
i|Xi1,Xi2, . . . ,XiT , vi] = σ2

uIT and E[v2i |Xi1,Xi2, . . . ,XiT ] = σ2
v

Remember that vi is a scalar and constant over time t, then we can derive the T × T
variance covariance matrix Ω as

Ω =


σ2
v + σ2

u σ2
v . . . σ2

v

σ2
v σ2

v + σ2
u . . .

...
...

...
. . . σ2

v

σ2
v σ2

v . . . σ2
v + σ2

u


Except for the Maximum Likelihood Estimation, which is shown on Professor’s class,

Feasible GLS estimation can also be applied to obtain the estimator.
Remember in Section 1.3, we derive the GLS estimator as

β̂GLS =

(
n∑

i=1

X′
iΩ

−1Xi

)−1( n∑
i=1

X′
iΩ

−1yi

)
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However, since vi is an unobservable variable, we will not obtain the specific value of Ω.
Therefore, we need to estimate Ω first.

To do so, we estimate the regression yi = Xiβ+ϵi by OLS and obtain β̂OLS together
with

ϵ̂it = yit −Xitβ̂OLS

Then a consistent estimator of σ̂ϵ is

σ̂ϵ
2 =

1

nT −K

n∑
i=1

T∑
t=1

ϵ̂2it

Pay attention that σ̂ϵ
2 is the estimator of the diagonal element in Ω, which is σ2

v+σ2
u.

Then we still need to estimate σ̂v
2.

As for a consistent estimator of σ2
v , let us start from its definition:

σ2
v = E[ϵitϵis], t ̸= s

This means for each t, there are T (T − 1)/2 redundant error products that can be used
to estimate σ2

v .

E[
T−1∑
t=1

T∑
s=t+1

ϵitϵis] =
T−1∑
t=1

T∑
s=t+1

E[ϵitϵis] =
T−1∑
t=1

T∑
s=t+1

σ2
v

=
T−1∑
t=1

σ2
v(T − t)

= σ2
vT (T − 1)/2

Thus a consistent estimator is

σ̂v
2 =

1

nT (T − 1)/2−K

n∑
i=1

T−1∑
t=1

T∑
s=t+1

ϵ̂itϵ̂is

And you can even derive the σ̂u
2 by σ̂v

2 − σ̂v
2.

Ω̂ is estimated, thus the FGLS estimator can be deducted as

β̂FGLS =

(
n∑

i=1

X′
iΩ̂

−1Xi

)−1( n∑
i=1

X′
iΩ̂

−1yi

)
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