^r Econometrics II 」 Homework No.1

Due: Bring your answer sheet in this classroom at 10:20AM, December 21, 2023, or put it into my mailbox by then.

Consider that *n* random variables X_1, X_2, \dots, X_n are mutually independently and identically distributed as the density function $f(x; \theta)$, where θ is an unknown parameter to be estimated. For simplicity, θ is a scalar. Let s(X) be an unbiased estimator of θ for $X = (X_1, X_2, \dots, X_n)$.

(1) Suppose that $L(\theta; x) = \prod_{i=1}^{n} f(x_i; \theta)$, which is called the likelihood function. Show the following two equalities:

$$E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0.$$

-E $\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta^2}\right) = E\left(\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)^2\right) = V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right).$

(2) Show that the following inequality holds.

$$V(s(X)) \ge (I(\theta))^{-1},$$

where $I(\theta) = -E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta^2}\right)$, which is called Fisher's information matrix.

(3) Suppose that $s(X) = \tilde{\theta}$ is a maximum likelihood estimator. Then, show that

$$\sqrt{n}(\tilde{\theta}-\theta) \longrightarrow N(0,\sigma^2),$$

where $\sigma^2 = \lim_{n \to \infty} \left(\frac{I(\theta)}{n} \right)^{-1}$.

(4) Discuss about unbiasedness, consistency and efficiency of $\tilde{\theta}$.

2 Consider the following regression model:

$$y_i^* = X_i\beta + u_i,$$

where X_i is assumed to be exogenous and nonstochastic, and u_1, u_2, \dots, u_n are mutually independent errors.

Let f(x) be the density function of u_i and F(x) be the cumulative distribution function of u_i , i.e., $F(x) = \int_{-\infty}^{x} f(z) dz$. (a) Let us define:

$$y_i = \begin{cases} 1, & \text{if } y_i^* > 0, \\ 0, & \text{if } y_i^* \le 0, \end{cases}$$

i.e., y_i^* is not observed and we know the sign of y_i^* (i.e., positive or negative). y_i is assigned to be one when $y_i^* > 0$, while it is zero when $y_i \le 0$.

- (1) What is $E(y_i)$?
- (2) Obtain the likelihood function.
- (3) Assuming that the density function of u_i is $f(\cdot)$, derive the first-order condition.
- (4) Discuss how to estimate β and σ^2 .
- (5) What is the asymptotic distribution of the maximum likelihood estimator of $\beta^* = \frac{\beta}{\sigma}$?
 - (b) Let us define:

 $y_i^* = y_i,$ if $y_i > 0$,

i.e., y_t^* is not observed when $y_t \le 0$ and $y_t^* = y_t$ is observed when $y_t > 0$.

- (6) What is $E(y_i|y_i > 0)$?
- (7) Obtain the likelihood function.
- (8) Assuming that the density function of u_i is $f(\cdot)$, derive the first-order condition.
- (9) Discuss how to estimate β and σ^2 .

(10) What are the asymptotic distributions of the maximum likelihood estimators of β and σ^2 ?

(c) Let us define:

$$y_i^* = \begin{cases} y_i, & \text{if } y_i > 0, \\ 0, & \text{if } y_i \le 0, \end{cases}$$

i.e., $y_t^* = 0$ is observed when $y_t \le 0$ and $y_t^* = y_t$ is observed when $y_t > 0$.

- (11) Obtain the likelihood function.
- (12) Assuming that the density function of u_i is $f(\cdot)$, derive the first-order condition.
- (13) Discuss how to estimate β and σ^2 .

(14) What are the asymptotic distributions of the maximum likelihood estimators of β and σ^2 ?

3 Suppose that the probability function of y_i is Poisson with parameter λ_i for $i = 1, 2, \dots, n$.

(1) What is $E(y_i)$?

(2) Assuming $\lambda_i = \exp(X_i\beta)$, obtain the likelihood function, where β is a unknown parameter vector to be estimated.

- (3) Derive the first-order condition for maximization of the log-likelihood function.
- (4) Discuss how to estimate β .
- (5) What are the asymptotic distribution of the maximum likelihood estimator of β ?

4 We want to estimate the following regression model:

 $y_{it} = X_{it}\beta + v_i + u_{it},$

for $t = 1, 2, \dots, T$ and $i = 1, 2, \dots, n$. *i* denotes the *i*th individual and *t* denotes time *t*. v_i and u_{it} , $i = 1, 2, \dots, n$ and $t = 1, 2, \dots, T$, are mutually independent with $E(v_i) = 0$, $E(u_{it}) = 0$, $V(v_i) = \sigma_v^2$ and $V(u_{it}) = \sigma_u^2$. Answer the following questions in the matrix form. Each matrix should be defined.

- (1) Derive the estimator of β , using the fixed effect model.
- (2) Construct the likelihood function of y_{it} , $i = 1, 2, \dots, n$ and $t = 1, 2, \dots, T$.
- (3) Derive the estimator of β , using the random effect model.