4. Cramer-Rao Lower Bound (クラメール・ラオの下限): $(I(\theta))^{-1}$

Suppose that an unbiased estimator of θ is given by s(X).

Then, we have the following:

$$V(s(X)) \ge (I(\theta))^{-1}$$

Proof:

The expectation of s(X) is:

$$E(s(X)) = \int s(x)L(\theta; x)dx.$$

Differentiating the above with respect to θ ,

$$\frac{\partial E(s(X))}{\partial \theta'} = \int s(x) \frac{\partial L(\theta; x)}{\partial \theta'} dx = \int s(x) \frac{\partial \log L(\theta; x)}{\partial \theta'} L(\theta; x) dx$$
$$= Cov \left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta} \right)$$

For simplicity, let s(X) and θ be scalars.

Then,

$$\begin{split} \left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^2 &= \left(\mathrm{Cov}\left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta}\right)\right)^2 = \rho^2 \mathrm{V}\left(s(X)\right) \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) \\ &\leq \mathrm{V}\left(s(X)\right) \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right), \end{split}$$

where ρ denotes the correlation coefficient between s(X) and $\frac{\partial \log L(\theta; X)}{\partial \theta}$, i.e.,

$$\rho = \frac{\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta}\right)}{\sqrt{\operatorname{V}\left(s(X)\right)}\sqrt{\operatorname{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)}}.$$

Note that $|\rho| \leq 1$.

Therefore, we have the following inequality:

$$\left(\frac{\partial \mathsf{E}(s(X))}{\partial \theta}\right)^2 \le \mathsf{V}(s(X)) \, \mathsf{V}\left(\frac{\partial \log L(\theta;X)}{\partial \theta}\right),\,$$

i.e.,

$$V(s(X)) \ge \frac{\left(\frac{\partial E(s(X))}{\partial \theta}\right)^2}{V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)}$$

Especially, when $E(s(X)) = \theta$,

$$V(s(X)) \ge \frac{1}{-E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta^2}\right)} = (I(\theta))^{-1}.$$

Even in the case where s(X) is a vector, the following inequality holds.

$$V(s(X)) \ge (I(\theta))^{-1},$$

where $I(\theta)$ is defined as:

$$\begin{split} I(\theta) &= -\mathrm{E}\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right) \\ &= \mathrm{E}\left(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\right) = \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right). \end{split}$$

The variance of any unbiased estimator of θ is larger than or equal to $(I(\theta))^{-1}$.

5. Asymptotic Normality of MLE:

Let $\tilde{\theta}$ be MLE of θ .

As n goes to infinity, we have the following result:

$$\sqrt{n}(\tilde{\theta} - \theta) \longrightarrow N\left(0, \left(\lim_{n \to \infty} \left(\frac{I(\theta)}{n}\right)\right)^{-1}\right) \quad \text{or} \quad N(0, \Sigma^{-1}),$$

where it is assumed that $\lim_{n\to\infty} \left(\frac{I(\theta)}{n}\right) \equiv \Sigma$.

That is, when n is large, we have the following distribution:

$$\sqrt{n}(\tilde{\theta}-\theta) \sim N\left(0,\left(\frac{I(\theta)}{n}\right)^{-1}\right).$$

That is, $\tilde{\theta}$ is approximately distributed as follows:

$$\tilde{\theta} \sim N(\theta, (I(\theta))^{-1}).$$

Suppose that $s(X) = \tilde{\theta}$.

When *n* is large, V(s(X)) is approximately equal to $(I(\theta))^{-1}$.

Practically, we utilize the following approximated distribution:

$$\tilde{\theta} \sim N(\theta, (I(\tilde{\theta}))^{-1}).$$

Then, we can obtain the significance test and the confidence interval for θ

6. **Central Limit Theorem:** Let X_1, X_2, \dots, X_n be mutually independently distributed random variables with mean $E(X_i) = \mu$ and variance $V(X_i) = \sigma^2 < \infty$ for $i = 1, 2, \dots, n$.

Define $\overline{X} = (1/n) \sum_{i=1}^{n} X_i$.

Then, the central limit theorem is given by:

$$\frac{\overline{X} - \mathrm{E}(\overline{X})}{\sqrt{\mathrm{V}(\overline{X})}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1).$$

Note that $E(\overline{X}) = \mu$ and $V(\overline{X}) = \sigma^2/n$.

That is,

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \sigma^2).$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) = \sigma^2$.

In the case where X_i is a vector of random variable with mean μ and variance $\Sigma < \infty$, the central limit theorem is given by:

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \Sigma).$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) = \Sigma$.

7. **Central Limit Theorem II:** Let X_1, X_2, \dots, X_n be mutually independently distributed random variables with mean $E(X_i) = \mu$ and variance $V(X_i) = \sigma_i^2$ for $i = 1, 2, \dots, n$.

Assume:

$$\sigma^2 = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \sigma_i^2 < \infty.$$

Define $\overline{X} = (1/n) \sum_{i=1}^{n} X_i$.

Then, the central limit theorem is given by:

$$\frac{\overline{X} - \mathrm{E}(\overline{X})}{\sqrt{\mathrm{V}(\overline{X})}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1),$$

i.e.,

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \sigma^2).$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) \longrightarrow \sigma^2$.

In the case where X_i is a vector of random variable with mean μ and variance Σ_i , the central limit theorem is given by:

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \Sigma),$$

where
$$\Sigma = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \Sigma_i < \infty$$
.

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) \longrightarrow \Sigma$.

[Review of Asymptotic Theories]

• Convergence in Probability (確率収束) $X_n \longrightarrow a$, i.e., X_n converges in probability to a, where a is a fixed number.

• Convergence in Distribution (分布収束) $X_n \longrightarrow X$, i.e., X converges in distribution to X. The distribution of X_n converges to the distribution of X as n goes to infinity.

Some Formulas

 X_n and Y_n : Convergence in Probability

 Z_n : Convergence in Distribution

- If $X_n \longrightarrow a$, then $f(X_n) \longrightarrow f(a)$.
- If $X_n \longrightarrow a$ and $Y_n \longrightarrow b$, then $f(X_n Y_n) \longrightarrow f(ab)$.
- If $X_n \longrightarrow a$ and $Z_n \longrightarrow Z$, then $X_n Z_n \longrightarrow aZ$, i.e., aZ is distributed with mean E(aZ) = aE(Z) and variance $V(aZ) = a^2V(Z)$.

[End of Review]

8. Weak Law of Large Numbers (大数の弱法則) — Review:

n random variables X_1, X_2, \dots, X_n are assumed to be mutually independently and identically distributed, where $E(X_i) = \mu$ and $V(X_i) = \sigma^2 < \infty$.

Then, $\overline{X} \longrightarrow \mu$ as $n \longrightarrow \infty$, which is called the **weak law of large numbers**.

- → Convergence in probability
- → Proved by Chebyshev's inequality
- 9. Some Formulas of Expectaion and Variance in Multivariate Cases
 - Review:

A vector of randam variavle *X*: $E(X) = \mu$ and $V(X) \equiv E((X - \mu)(X - \mu)') = \Sigma$

Then, $E(AX) = A\mu$ and $V(AX) = A\Sigma A'$.

Proof:

$$E(AX) = AE(X) = A\mu$$

$$V(AX) = E((AX - A\mu)(AX - A\mu)') = E(A(X - \mu)(A(X - \mu))')$$

$$= E(A(X - \mu)(X - \mu)'A') = AE((X - \mu)(X - \mu)')A' = AV(X)A' = A\Sigma A'$$

10. Asymptotic Normality of MLE — Proof:

The density (or probability) function of X_i is given by $f(x_i; \theta)$.

For simplicity, consider the case where θ is a scalar.

The likelihood function is:
$$L(\theta; x) \equiv f(x; \theta) = \prod_{i=1}^{n} f(x_i; \theta)$$
,

where
$$x = (x_1, x_2, \dots, x_n)$$
.

MLE of θ results in the following maximization problem:

$$\max_{\theta} \log L(\theta; x).$$

A solution of the above problem is given by MLE of θ , denoted by $\tilde{\theta}$.

That is, $\tilde{\theta}$ is given by the θ which satisfies the following equation:

$$\frac{\partial \log L(\theta; x)}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \log f(x_i; \theta)}{\partial \theta} = 0.$$

Replacing x_i by the underlying random variable X_i , $\frac{\partial \log f(X_i; \theta)}{\partial \theta}$ is taken as the *i*th random variable, i.e., X_i in the **Central Limit Theorem II**.

Consider applying Central Limit Theorem II as follows:

$$\frac{\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}-\mathrm{E}\left(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}\right)}{\sqrt{\mathrm{V}\left(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}\right)}}=\frac{\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}-\mathrm{E}\left(\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}\right)}{\sqrt{\mathrm{V}\left(\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}\right)}}.$$

Note that

$$\sum_{i=1}^{n} \frac{\partial \log f(X_i; \theta)}{\partial \theta} = \frac{\partial \log L(\theta; X)}{\partial \theta}$$

In this case, we need the following expectation and variance:

$$E\left(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}\right) = E\left(\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}\right) = 0,$$

and

$$V\left(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}\right) = V\left(\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}\right) = \frac{1}{n^{2}}I(\theta).$$

Note that
$$E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0$$
 and $V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = I(\theta)$.

$$\frac{\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f(X_{i}; \theta)}{\partial \theta} - E\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f(X_{i}; \theta)}{\partial \theta}\right)}{\sqrt{V\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f(X_{i}; \theta)}{\partial \theta}\right)}} = \frac{\frac{1}{n} \frac{\partial \log L(\theta; X)}{\partial \theta} - E\left(\frac{1}{n} \frac{\partial \log L(\theta; X)}{\partial \theta}\right)}{\sqrt{V\left(\frac{1}{n} \frac{\partial \log L(\theta; X)}{\partial \theta}\right)}} = \frac{\frac{1}{n} \frac{\partial \log L(\theta; X)}{\partial \theta} - \frac{1}{n} E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)}{\frac{1}{\sqrt{n}} \sqrt{\frac{1}{n} V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)}} = \frac{\frac{1}{n} \frac{\partial \log L(\theta; X)}{\partial \theta}}{\sqrt{\frac{1}{n} I(\theta)}} \longrightarrow N(0, 1)$$

We have assumed that $\lim_{n\to\infty} \frac{1}{n}I(\theta) = \sigma^2$.

Therefore.

$$\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta; X)}{\partial \theta} \longrightarrow N(0, \sigma^2)$$

In the case where θ is a vector, we have:

$$\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta; X)}{\partial \theta} \longrightarrow N(0, \Sigma),$$

where $\Sigma = \lim_{n \to \infty} \frac{1}{n} I(\theta)$, which is a $k \times k$ matrix when θ is a $k \times 1$ vector, and $X = (X_1, X_2, \dots, X_n)$.

Now, replacing θ by $\tilde{\theta}$, consider the asymptotic distribution of

$$\frac{1}{\sqrt{n}}\frac{\partial \log L(\tilde{\theta};X)}{\partial \theta},$$

which is expanded around $\tilde{\theta} = \theta$ as follows:

$$0 = \frac{1}{\sqrt{n}} \frac{\partial \log L(\tilde{\theta}; X)}{\partial \theta} \approx \frac{1}{\sqrt{n}} \frac{\partial \log L(\theta; X)}{\partial \theta} + \frac{1}{\sqrt{n}} \frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'} (\tilde{\theta} - \theta).$$

Therefore.

$$-\frac{1}{\sqrt{n}}\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}(\tilde{\theta} - \theta) \approx \frac{1}{\sqrt{n}}\frac{\partial \log L(\theta;X)}{\partial \theta} \longrightarrow N(0,\Sigma).$$

The left-hand side is rewritten as:

$$-\frac{1}{\sqrt{n}}\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}(\tilde{\theta}-\theta) = \sqrt{n} \left(-\frac{1}{n}\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}\right)(\tilde{\theta}-\theta).$$

Then,

$$\begin{split} \sqrt{n}(\tilde{\theta} - \theta) &\approx \left(-\frac{1}{n} \frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'} \right)^{-1} \left(\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta; X)}{\partial \theta} \right) \\ &\longrightarrow N(0, \Sigma^{-1} \Sigma \Sigma^{-1}) = N(0, \Sigma^{-1}). \end{split}$$

Using the law of large number, note that

$$-\frac{1}{n}\frac{\partial^{2} \log L(\theta; X)}{\partial \theta \partial \theta'} \longrightarrow \lim_{n \to \infty} \frac{1}{n} \left(-\mathbb{E} \left(\frac{\partial^{2} \log L(\theta; X)}{\partial \theta \partial \theta'} \right) \right)$$
$$= \lim_{n \to \infty} \frac{1}{n} \left(\mathbb{V} \left(\frac{\partial \log L(\theta; X)}{\partial \theta} \right) \right) = \lim_{n \to \infty} \frac{1}{n} I(\theta) = \Sigma,$$