$$\Delta y_{2,t} = \epsilon_{2,t},$$

where both  $y_{1,t}$  and  $y_{2,t}$  are I(1) processes.

The linear combination  $y_{1,t} - \phi_1 y_{2,t}$  is I(0).

In this case, we say that  $y_t = (y_{1,t}, y_{2,t})'$  is cointegrated with  $a = (1, -\phi_1)$ .

 $a = (1, -\phi_1)$  is called the cointegrating vector, which is not unique.

Therefore, the first element of a is set to be one.

# 8.5 Spurious Regression (見せかけ回帰)

1. Suppose that  $y_t \sim I(1)$  and  $x_t \sim I(1)$ .

For the regression model  $y_t = x_t \beta + u_t$ , OLS does not work well if we do not have the  $\beta$  which satisfies  $u_t \sim I(0)$ .

- ⇒ Spurious regression (見せかけ回帰)
- 2. Suppose that  $y_t \sim I(1)$ ,  $y_t$  is a  $g \times 1$  vector and  $y_t = \begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix}$ .  $y_{2,t}$  is a  $k \times 1$  vector, where k = g 1.

Consider the following regression model:

$$y_{1,t} = \alpha + \gamma' y_{2,t} + u_t, \qquad t = 1, 2, \dots, T.$$

OLSE is given by:

$$\begin{pmatrix} \hat{\alpha} \\ \hat{\gamma} \end{pmatrix} = \begin{pmatrix} T & \sum y'_{2,t} \\ \sum y_{2,t} & \sum y_{2,t} y'_{2,t} \end{pmatrix}^{-1} \begin{pmatrix} \sum y_{1,t} \\ \sum y_{1,t} y_{2,t} \end{pmatrix}.$$

Next, consider testing the null hypothesis  $H_0$ :  $R\gamma = r$ , where R is a  $m \times k$  matrix  $(m \le k)$  and r is a  $m \times 1$  vector.

The F statistic, denoted by  $F_T$ , is given by:

$$F_{T} = \frac{1}{m} (R\hat{\gamma} - r)' \left( s_{T}^{2} (0 R) \begin{pmatrix} T & \sum y'_{2,t} \\ \sum y_{2,t} & \sum y_{2,t} y'_{2,t} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ R' \end{pmatrix} \right)^{-1} (R\hat{\gamma} - r),$$

where

$$s_T^2 = \frac{1}{T - g} \sum_{t=1}^{T} (y_{1,t} - \hat{\alpha} - \hat{\gamma}' y_{2,t})^2.$$

When we have the  $\gamma$  such that  $y_{1,t} - \gamma y_{2,t}$  is stationary, OLSE of  $\gamma$ , i.e.,  $\hat{\gamma}$ , is not statistically equal to zero.

When the sample size T is large enough,  $H_0$  is rejected by the F test.

3. Phillips, P.C.B. (1986) "Understanding Spurious Regressions in Econometrics," *Journal of Econometrics*, Vol.33, pp.95 – 131.

Consider a  $g \times 1$  vector  $v_t$  whose first difference is described by:

$$\Delta y_t = \Psi(L)\epsilon_t = \sum_{s=0}^{\infty} \Psi_s \epsilon_{t-s},$$

for  $\epsilon_t$  an i.i.d.  $g \times 1$  vector with mean zero , variance  $E(\epsilon_t \epsilon_t') = PP'$ , and finite fourth moments and where  $\{s\Psi_s\}_{s=0}^{\infty}$  is absolutely summable.

Let k = g - 1 and  $\Lambda = \Psi(1)P$ .

Partition  $y_t$  as  $y_t = \begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix}$  and  $\Lambda\Lambda'$  as  $\Lambda\Lambda' = \begin{pmatrix} \Sigma_{11} & \Sigma'_{21} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$ , where  $y_{1,t}$  and  $\Sigma_{11}$  are scalars,  $y_{2,t}$  and  $\Sigma_{21}$  are  $k \times 1$  vectors, and  $\Sigma_{22}$  is a  $k \times k$  matrix.

Suppose that  $\Lambda\Lambda'$  is nonsingular, and define  $\sigma_1^{*2} = \Sigma_{11} - \Sigma'_{21}\Sigma_{22}^{-1}\Sigma_{21}$ .

Let  $L_{22}$  denote the Cholesky factor of  $\Sigma_{22}^{-1}$ , i.e.,  $L_{22}$  is the lower triangular matrix satisfying  $\Sigma_{22}^{-1} = L_{22}L'_{22}$ .

Then, (a) - (c) hold.

(a) OLSEs of  $\alpha$  and  $\gamma$  in the regression model  $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$ , denoted by  $\hat{\alpha}_T$  and  $\hat{\gamma}_T$ , are characterized by:

characterized by: 
$$\begin{pmatrix} T^{-1/2}\hat{\alpha}_T \\ \hat{\gamma}_T - \Sigma_{22}^{-1}\Sigma_{21} \end{pmatrix} \longrightarrow \begin{pmatrix} \sigma_1^*h_1 \\ \sigma_1^*L_{22}h_2 \end{pmatrix},$$
 where 
$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} 1 & \int_0^1 W_2^*(r)'\mathrm{d}r \\ \int_0^1 W_2^*(r)\mathrm{d}r & \int_0^1 W_2^*(r)'\mathrm{d}r \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)\mathrm{d}r \\ \int_0^1 W_2^*(r)W_1^*(r)'\mathrm{d}r \end{pmatrix}.$$

 $W_1^*(r)$  and  $W_2^*(r)$  denote scalar and *g*-dimensional standard Brownian motions, and  $W_1^*(r)$  is independent of  $W_2^*(r)$ .

(b) The sum of squared residuals, denoted by  $RSS_T = \sum_{t=1}^T \hat{u}_t^2$ , satisfies

$$T^{-2}RSS_{T} \longrightarrow \sigma_{1}^{*2}H,$$
 where 
$$H = \int_{0}^{1} (W_{1}^{*}(r))^{2} dr - \left( \left( \int_{0}^{1} W_{1}^{*}(r) dr \right)' \binom{h_{1}}{h_{2}} \right)^{-1}.$$

(c) The  $F_T$  test satisfies:

$$T^{-1}F_{T} \longrightarrow \frac{1}{m} (\sigma_{1}^{*}R^{*}h_{2} - r^{*})'$$

$$\times \left(\sigma_{1}^{*2}H(0 R^{*}) \left(\begin{array}{cc} 1 & \int_{0}^{1}W_{2}^{*}(r)'dr \\ \int_{0}^{1}W_{2}^{*}(r)dr & \int_{0}^{1}W_{2}^{*}(r)W_{2}^{*}(r)'dr \end{array}\right)^{-1} (0 R^{*})'\right)^{-1}$$

$$\times (\sigma_1^* R^* h_2 - r^*),$$

where  $R^* = RL_{22}$  and  $r^* = r - R\Sigma_{22}^{-1}\Sigma_{21}$ .

## Summary: Spurious regression (見せかけの回帰)

Consider the regression model:  $y_{1,t} = \alpha + y_{2,t}\gamma + u_t$  for  $t = 1, 2, \dots, T$ 

and 
$$y_t \sim I(1)$$
 for  $y_t = (y_{1,t}, y_{2,t})'$ .

- (a) indicates that OLSE  $\hat{\gamma}_T$  is not consistent.
- (b) indicates that  $s_T^2 = \frac{1}{T g} \sum_{t=1}^{T} \hat{u}_t^2$  diverges.
- (c) indicates that  $F_T$  diverges.
- $\implies$  It seems that the coefficients are statistically significant, based on the conventional t statistics.

## 4. Resolution for Spurious Regression:

Suppose that  $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$  is a spurious regression.

(1) Estimate 
$$y_{1,t} = \alpha + \gamma' y_{2,t} + \phi y_{1,t-1} + \delta y_{2,t-1} + u_t$$
.

Then,  $\hat{\gamma}_T$  is  $\sqrt{T}$ -consistent, and the t test statistic goes to the standard normal distribution under  $H_0: \gamma = 0$ .

(2) Estimate  $\Delta y_{1,t} = \alpha + \gamma' \Delta y_{2,t} + u_t$ . Then,  $\hat{\alpha}_T$  and  $\hat{\beta}_T$  are  $\sqrt{T}$ -consistent, and the t test and F test make sense.

(3) Estimate  $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$  by the Cochrane-Orcutt method, assuming that  $u_t$  is the first-order serially correlated error.

Usually, choose (2).

However, there are two exceptions.

(i) The true value of  $\phi$  is not one, i.e., less than one.

(ii)  $y_{1,t}$  and  $y_{2,t}$  are the cointegrated processes.

In these two cases, taking the first difference leads to the misspecified regression.

#### 5. Cointegrating Vector:

Suppose that each element of  $v_t$  is I(1) and that  $a'v_t$  is I(0).

a is called a **cointegrating vector** (共和分ベクトル), which is not unique.

Set  $z_t = a'y_t$ , where  $z_t$  is scalar, and a and  $y_t$  are  $g \times 1$  vectors.

For  $z_t \sim I(0)$  (i.e., stationary),

$$T^{-1} \sum_{t=1}^{T} z_t^2 = T^{-1} \sum_{t=1}^{T} (a' y_t)^2 \longrightarrow E(z_t^2).$$

For  $z_t \sim I(1)$  (i.e., nonstationary, i.e., a is not a cointegrating vector),

$$T^{-2} \sum_{t=1}^{T} (a' y_t)^2 \longrightarrow \lambda^2 \int_0^1 (W(r))^2 dr,$$

where W(r) denotes a standard Brownian motion and  $\lambda^2$  indicates variance of  $(1 - L)z_t$ .

If a is not a cointegrating vector,  $T^{-1} \sum_{t=1}^{T} z_t^2$  diverges.

 $\implies$  We can obtain a consistent estimate of a cointegrating vector by minimizing  $\sum_{t=1}^{T} z_t^2$  with respect to a, where a normalization condition on a has to be imposed.

The estimator of the a including the normalization condition is super-consistent (T-consistent).

Stock, J.H. (1987) "Asymptotic Properties of Least Squares Estimators of Cointegrating Vectors," *Econometrica*, Vol.55, pp.1035 – 1056.

#### **Proposition:**

Let  $y_{1,t}$  be a scalar,  $y_{2,t}$  be a  $k \times 1$  vector, and  $(y_{1,t}, y'_{2,t})'$  be a  $g \times 1$  vector, where g = k + 1.

Consider the following model:

$$y_{1,t} = \alpha + \gamma' y_{2,t} + z_t^*,$$
  

$$\Delta y_{2,t} = u_{2,t},$$

$$\begin{pmatrix} z_t^* \\ u_{2,t} \end{pmatrix} = \Psi^*(L)\epsilon_t,$$