
• However, βMM is inconsistent when E(x′u) , 0, i.e.,

βMM = (X′X)−1X′y = β + (X′X)−1X′u = β +

(1
n

X′X
)−1(1

n
X′u

)
−→\ β.

Note as follows:
1
n

X′u =
1
n

n∑

i=1

x′iui −→ E(x′u) , 0.

In order to obtain a consistent estimator of β, we find the instrumental variable z which satisfies E(z′u) = 0.

Let zi be the ith realization of z, where zi is a 1 × k vector.

Then, we have the following:
1
n

Z′u =
1
n

n∑

i=1

z′iui −→ E(z′u) = 0.

The β which satisfies
1
n

n∑

i=1

z′iui = 0 is denoted by βIV , i.e.,
1
n

n∑

i=1

z′i(yi − xiβIV ) = 0.

Thus, βIV is obtained as:

βIV =

(1
n

n∑

i=1

z′i xi

)−1(1
n

n∑

i=1

z′iyi

)
= (Z′X)−1Z′y.

Note that Z′X is a k × k square matrix, where we assume that the inverse matrix of Z′X exists.
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Assume that as n goes to infinity there exist the following moment matrices:

1
n

n∑

i=1

z′i xi =
1
n

Z′X −→ Mzx,

1
n

n∑

i=1

z′izi =
1
n

Z′Z −→ Mzz,

1
n

n∑

i=1

z′iui =
1
n

Z′u −→ 0.

As n goes to infinity, βIV is rewritten as:

βIV = (Z′X)−1Z′y = (Z′X)−1Z′(Xβ + u) = β + (Z′X)−1Z′u

= β + (
1
n

Z′X)−1(
1
n

Z′u) −→ β + Mzx × 0 = β,

Thus, βIV is a consistent estimator of β.
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• We consider the asymptotic distribution of βIV .

By the central limit theorem,
1√
n

Z′u −→ N(0, σ2Mzz)

Note that V(
1√
n

Z′u) =
1
n

V(Z′u) =
1
n

E(Z′uu′Z) =
1
n

E
(
E(Z′uu′Z|Z)

)

=
1
n

E
(
Z′E(uu′|Z)Z

)
=

1
n

E(σ2Z′Z) = E(σ2 1
n

Z′Z) −→ E(σ2Mzz) = σ2Mzz.

We obtain the following asymmptotic distribution:

√
n(βIV − β) = (

1
n

Z′X)−1(
1√
n

Z′u) −→ N(0, σ2M−1
zx MzzM−1

zx
′)

Practically, for large n we use the following distribution:

βIV ∼ N
(
β, s2(Z′X)−1Z′Z(Z′X)−1′

)
,

where s2 =
1

n − k
(y − XβIV )′(y − XβIV ).

• In the case where zi is a 1 × r vector for r > k, Z′X is a r × k matrix, which is not a square matrix. =⇒
Generalized Method of Moments (GMM,一般化積率法)
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10.2 Generalized Method of Moments (GMM,一般化積率法)

In order to obtain a consistent estimator of β, we have to find the instrumental variable z which satisfies

E(z′u) = 0.

For now, however, suppose that we have z with E(z′u) = 0.

Let zi be the ith realization (i.e., the ith data) of z, where zi is a 1 × r vector and r > k.

Then, using the law of large number, we have the following:

1
n

Z′u =
1
n

n∑

i=1

z′iui =
1
n

n∑

i=1

z′i(yi − xiβ) −→ E(z′u) = 0.

The number of equations (i.e., r) is larger than the number of parameters (i.e., k).
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Let us define W as a r × r weight matrix, which is symmetric.

We solve the following minimization problem:

min
β

(1
n

n∑

i=1

z′i(yi − xiβ)
)′

W
(1
n

n∑

i=1

z′i(yi − xiβ)
)
,

which is equivalent to:

min
β

(
Z′(y − Xβ)

)′
W

(
Z′(y − Xβ)

)
,

i.e.,

min
β

(y − Xβ)′ZWZ′(y − Xβ).

Note that
∑n

i=1 z′i(yi − xiβ) = Z′(y − Xβ).

W should be the inverse matrix of the variance-covariance matrix of Z′(y − Xβ) = Z′u.

Suppose that V(u) = σ2Ω.

Then, V(Z′u) = E
(
Z′u(Z′u)′

)
= E(Z′uu′Z) = Z′E(uu′)Z = σ2Z′ΩZ = W−1.

The following minimization problem should be solved.

min
β

(y − Xβ)′Z(Z′ΩZ)−1Z′(y − Xβ).

The solution of β is given by the GMM estimator, denoted by βGMM .
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Remark: For the model: y = Xβ + u and u ∼ (0, σ2Ω), solving the following minimization problem:

min
β

(y − Xβ)′Ω−1(y − Xβ),

GLS is given by:

b = (X′Ω−1X)−1X′Ω−1y.

Note that b is the best linear unbiased estimator.
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Remark: The solution of the above minimization problem is equivalent to the GLE estimator of β in the

following regression model:

Z′y = Z′Xβ + Z′u,

where Z, y, X, β and u are n × r, n × 1, n × k, k × 1 and n × 1 matrices or vectors.

Note that r > k.

y∗ = Z′y, X∗ = Z′X and u∗ = Z′u denote r × 1, r × k and r × 1 matrices or vectors, where r > k.

Rewrite as follows:

y∗ = X∗β + u∗,

=⇒ r is taken as the sample size.

u∗ is a r × 1 vector.

The elements of u∗ are correlated with each other, beacuse each element of u∗ is a function of u1, u2, · · ·, un.

The variance of u∗ is:

V(u∗) = V(Z′u) = σ2Z′ΩZ.
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Go back to GMM:

(y − Xβ)′Z(Z′ΩZ)−1Z′(y − Xβ)

= y′Z(Z′ΩZ)−1Z′y − β′X′Z(Z′ΩZ)−1Z′y − y′Z(Z′ΩZ)−1Z′Xβ + β′X′Z(Z′ΩZ)−1Z′Xβ

= y′ZWZ′y − 2y′Z(Z′ΩZ)−1Z′Xβ + β′X′Z(Z′ΩZ)−1Z′Xβ.

Note that β′X′Z(Z′ΩZ)−1Z′y = y′Z(Z′ΩZ)−1Z′Xβ because both sides are scalars.

Remember that
∂Ax

x
= A′ and

∂x′Ax
x

= (A + A′)x.

Then, we obtain the following derivation:

∂(y − Xβ)′Z(Z′ΩZ)−1Z′(y − Xβ)
∂β

= −2(y′Z(Z′ΩZ)−1Z′X)′ +
(
X′Z(Z′ΩZ)−1Z′X + (X′Z(Z′ΩZ)−1Z′X)′

)
β

= −2X′Z(Z′ΩZ)−1Z′y + 2X′Z(Z′ΩZ)−1Z′Xβ = 0

The solution of β is denoted by βGMM , which is:

βGMM = (X′Z(Z′ΩZ)−1Z′X)−1X′Z(Z′ΩZ)−1Z′y.
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The mean of βGMM is asymptotically obtained.

βGMM = (X′Z(Z′ΩZ)−1Z′X)−1X′Z(Z′ΩZ)−1Z′(Xβ + u)

= β + (X′Z(Z′ΩZ)−1Z′X)−1X′Z(Z′ΩZ)−1Z′u

= β +

(
(
1
n

X′Z)(
1
n

Z′ΩZ)−1(
1
n

Z′X)
)−1

(
1
n

X′Z)(
1
n

Z′ΩZ)−1(
1
n

Z′u)

We assume that
1
n

X′Z −→ Mxz and
1
n

Z′ΩZ −→ MzΩz,

which are k × r and r × r matrices.

From the assumption of
1
n

Z′u −→ 0, we have the following result:

βGMM −→ β + (MxzM−1
zΩzM′xz)

−1MxzM−1
zΩz × 0 = β.

Thus, βGMM is a consistent estimator of β (i.e., asymptotically unbiased estimator).
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The variance of βGMM is asymptotically obtained as follows:

V(βGMM) = E
(
(βGMM − E(βGMM))(βGMM − E(βGMM))′

)
≈ E

(
(βGMM − β)(βGMM − β)′

)

= E
(
(X′Z(Z′ΩZ)−1Z′X)−1X′Z(Z′ΩZ)−1Z′u

(
(X′Z(Z′ΩZ)−1Z′X)−1X′Z(Z′ΩZ)−1Z′u

)′)

= E
(
(X′Z(Z′ΩZ)−1Z′X)−1X′Z(Z′ΩZ)−1Z′uu′Z(Z′ΩZ)−1Z′X(X′Z(Z′ΩZ)−1Z′X)−1

)

≈ (X′Z(Z′ΩZ)−1Z′X)−1X′Z(Z′ΩZ)−1Z′E(uu′)Z(Z′ΩZ)−1Z′X(X′Z(Z′ΩZ)−1Z′X)−1

= σ2(X′Z(Z′ΩZ)−1Z′X)−1.

Note that βGMM −→ β implies E(βGMM) −→ β in the 1st line.

≈ in the 4th line indicates that Z and X are treated as exogenous variables although they are stochastic.

We assume that E(uu′) = σ2Ω from the 4th line to the 5th line.
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• We derive the asymptotic distribution of βGMM .

From the central limit theorem,
1√
n

Z′u −→ N(0, σ2MzΩz).

Accordingly, βGMM is asymptotically distributed as:

√
n(βGMM − β) =

(
(
1
n

X′Z)(
1
n

Z′ΩZ)−1(
1
n

Z′X)
)−1

(
1
n

X′Z)(
1
n

Z′ΩZ)−1(
1√
n

Z′u)

−→ N(0, σ2(MxzM−1
zΩzM′xz)

−1).

Practically, we use: βGMM ∼ N
(
β, s2(X′Z(Z′ΩZ)−1Z′X)−1

)
,

where s2 =
1

n − k
(y − XβGMM)′Ω−1(y − XβGMM).

We may use n instead of n − k.
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Identically and Independently Distributed Errors:
• If u1, u2, · · ·, un are mutually independent and ui is distributed with mean zero and variance σ2, the mean

and variance of u∗ are given by:

E(u∗) = 0 and V(u∗) = E(u∗u∗′) = σ2Z′Z.

Using GLS, GMM is obtained as:

βGMM = (X∗′(Z′Z)−1X∗)−1X∗′(Z′Z)−1y∗ =

(
X′Z(Z′Z)−1Z′X

)−1
X′Z(Z′Z)−1Z′y.

• We derive the asymptotic distribution of βGMM .

From the central limit theorem,
1√
n

Z′u −→ N(0, σ2Mzz).
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Accordingly, βGMM is distributed as:

√
n(βGMM − β) =

(
(
1
n

X′Z)(
1
n

Z′Z)−1(
1
n

Z′X)
)−1

(
1
n

X′Z)(
1
n

Z′Z)−1(
1√
n

Z′u)

−→ N
(
0, σ2(MxzM−1

zz M′xz)
−1

)
.

Practically, for large n we use the following distribution:

βGMM ∼ N
(
β, s2(X′Z(Z′Z)−1Z′X)−1

)
,

where s2 =
1

n − k
(y − XβGMM)′(y − XβGMM).
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• The above GMM is equivalent to 2SLS.

X: n × k, Z: n × r, r > k.

Assume:
1
n

X′u =
1
n

n∑

i=1

x′iui −→ E(x′u) , 0,

1
n

Z′u =
1
n

n∑

i=1

z′iui −→ E(z′u) = 0.

Regress X on Z, i.e., X = ZΓ + V by OLS, where Γ is a r × k unknown parameter matrix and V is an error

term,

Denote the predicted value of X by X̂ = ZΓ̂ = Z(Z′Z)−1Z′X, where Γ̂ = (Z′Z)−1Z′X.
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Review — IV estimator: Consider the regression model is:

y = Xβ + u,

Assumption: E(X′u) , 0 and E(Z′u) = 0.

The n × k matrix Z is called the instrumental variable (IV).

The IV estimator is given by:

βIV = (Z′X)−1Z′y,
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• Note that 2SLS is equivalent to IV in the case of Z = X̂, where this Z is different from the previous Z.

This Z is a n × k matrix, while the previous Z is a n × r matrix.

Z in the IV estimator is replaced by X̂.

Then,

β2S LS = (X̂′X)−1X̂′y =

(
X′Z(Z′Z)−1Z′X

)−1
X′Z(Z′Z)−1Z′y = βGMM .

GMM is interpreted as the GLS applied to MM.
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