
1 Some Formulas of Matrix Algebra

1. Let A =


a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...

al1 al2 · · · alk

 = [ai j],

which is a l × k matrix, where ai j denotes ith row and jth column of A.

The transposed matrix (転置行列) of A, denoted by A′, is defined as:

A′ =


a11 a21 · · · al1

a12 a22 · · · al2
...

...
. . .

...

a1k a2k · · · alk

 = [a ji],

where the ith row of A′ is the ith column of A.

2. (Ax)′ = x′A′,

where A and x are a l × k matrix and a k × 1 vector, respectively.
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3. a′ = a,

where a denotes a scalar.

4.
∂a′x
∂x
= a,

where a and x are k × 1 vectors.

5. If A is symmetric, A = A′.

6.
∂x′Ax
∂x

= (A + A′)x,

where A and x are a k × k matrix and a k × 1 vector, respectively.

Especially, when A is symmetric,
∂x′Ax
∂x

= 2Ax.

7. Let A and B be k × k matrices, and Ik be a k × k identity matrix (単位行列) (one in the
diagonal elements and zero in the other elements).

When AB = Ik, B is called the inverse matrix (逆行列) of A, denoted by B = A−1.

That is, AA−1 = A−1A = Ik.
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8. Let A be a k × k matrix and x be a k × 1 vector.

If A is a positive definite matrix (正値定符号行列), for any x except for x = 0 we have:

x′Ax > 0.

If A is a positive semidefinite matrix (非負値定符号行列), for any x except for x = 0 we
have:

x′Ax ≥ 0.

If A is a negative definite matrix (負値定符号行列), for any x except for x = 0 we have:

x′Ax < 0.

If A is a negative semidefinite matrix (非正値定符号行列), for any x except for x = 0 we
have:

x′Ax ≤ 0.
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Trace, Rank and etc.: A : k × k, B : n × k, C : k × n.

1. The trace (トレース) of A is: tr(A) =
k∑

i=1

aii, where A = [ai j] .

2. The rank (ランク，階数) of A is the maximum number of linearly independent column (or
row) vectors of A, which is denoted by rank(A).

3. If A is an idempotent matrix (べき等行列), A = A2 .

4. If A is an idempotent and symmetric matrix, A = A2 = A′A .

5. A is idempotent if and only if the eigen values of A consist of 1 and 0.

6. If A is idempotent, rank(A) =tr(A) .

7. tr(BC) =tr(CB)

Distributions in Matrix Form:
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1. Let X, µ and Σ be k × 1, k × 1 and k × k matrices.

When X ∼ N(µ,Σ), the density function of X is given by:

f (x) =
1

(2π)k/2|Σ|1/2 exp
(
−1

2
(x − µ)′Σ−1(x − µ)

)
.

E(X) = µ and V(X) = E
(
(X − µ)(X − µ)′

)
= Σ

The moment-generating function: ϕ(θ) = E
(
exp(θ′X)

)
= exp(θ′µ + 1

2θ
′Σθ)

(*) In the univariate case, when X ∼ N(µ, σ2), the density function of X is:

f (x) =
1

(2πσ2)1/2 exp
(
− 1

2σ2 (x − µ)2
)
.

2. If X ∼ N(µ,Σ), then (X − µ)′Σ−1(X − µ) ∼ χ2(k).

Note that X′X ∼ χ2(k) when X ∼ N(0, Ik).

3. X: n × 1, Y: m × 1, X ∼ N(µx,Σx), Y ∼ N(µy,Σy)

X is independent of Y , i.e., E
(
(X − µx)(Y − µy)′

)
= 0 in the case of normal random variables.
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(X − µx)′Σ−1
x (X − µx)/n

(Y − µy)′Σ−1
y (Y − µy)/m

∼ F(n,m)

4. If X ∼ N(0, σ2In) and A is a symmetric idempotent n × n matrix of rank G, then X′AX/σ2 ∼
χ2(G).

Note that X′AX = (AX)′(AX) and rank(A) = tr(A) because A is idempotent.

5. If X ∼ N(0, σ2In), A and B are symmetric idempotent n × n matrices of rank G and K, and
AB = 0, then

X′AX
Gσ2

/X′BX
Kσ2 =

X′AX/G
X′BX/K

∼ F(G,K).
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2 Multiple Regression Model (重回帰モデル)
Up to now, only one independent variable, i.e., xi, is taken into the regression model.
We extend it to more independent variables, which is called the multiple regression model (重回
帰モデル).
We consider the following regression model:

yi = β1xi,1 + β2xi,2 + · · · + βkxi,k + ui = (xi,1, xi,2, · · · , xi,k)


β1

β2
...

βk

 + ui = xiβ + ui,

for i = 1, 2, · · · , n, where xi and β denote a 1 × k vector of the independent variables and a k × 1
vector of the unknown parameters to be estimated, which are given by:

xi = (xi,1, xi,2, · · · , xi,k), β =


β1

β2
...

βk

 .
xi, j denotes the ith observation of the jth independent variable.
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The case of k = 2 and xi,1 = 1 for all i is exactly equivalent to (??).
Therefore, the matrix form above is a generalization of (??).
Writing all the equations for i = 1, 2, · · · , n, we have:

y1 = β1x1,1 + β2x1,2 + · · · + βkx1,k + u1 = x1β + u1,

y2 = β1x2,1 + β2x2,2 + · · · + βkx2,k + u2 = x2β + u2,
...

yn = β1xn,1 + β2xn,2 + · · · + βkxn,k + un = xnβ + un,

which is rewritten as:
y1

y2
...

yn

 =


x1,1 x1,2 · · · x1,k

x2,1 x2,2 · · · x2,k
...

...
. . .

...

xn,1 xn,2 · · · xn,k



β1

β2
...

βk

 +


u1

u2
...

un


=


x1

x2
...

xn

 β +


u1

u2
...

un

 .
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Again, the above equation is compactly rewritten as:

y = Xβ + u, (1)

where y, X and u are denoted by:

y =


y1

y2
...

yn

 , X =


x1,1 x1,2 · · · x1,k

x2,1 x2,2 · · · x2,k
...

...
. . .

...

xn,1 xn,2 · · · xn,k

 =


x1

x2
...

xn

 , u =


u1

u2
...

un

 .
Utilizing the matrix form (1), we derive the ordinary least squares estimator of β, denoted by β̂.
In (1), replacing β by β̂, we have the following equation:

y = Xβ̂ + e,

where e denotes a n × 1 vector of the residuals.
The ith element of e is given by ei.
The sum of squared residuals is written as follows:

S (β̂) =
n∑

i=1

e2
i = e′e = (y − Xβ̂)′(y − Xβ̂) = (y′ − β̂′X′)(y − Xβ̂)

= y′y − y′Xβ̂ − β̂′X′y + β̂′X′Xβ̂ = y′y − 2y′Xβ̂ + β̂′X′Xβ̂.
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In the last equality, note that β̂′X′y = y′Xβ̂ because both are scalars.
To minimize S (β̂) with respect to β̂, we set the first derivative of S (β̂) equal to zero, i.e.,

∂S (β̂)
∂β̂

= −2X′y + 2X′Xβ̂ = 0.

Solving the equation above with respect to β̂, the ordinary least squares estimator (OLS, 最小
自乗推定量) of β is given by:

β̂ = (X′X)−1X′y. (2)

Thus, the ordinary least squares estimator is derived in the matrix form.
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(*) Remark

The second order condition for minimization:

∂2S (β̂)
∂β̂∂β̂′

= 2X′X

is a positive definite matrix.

Set c = Xd.

For any d , 0, we have c′c = d′X′Xd > 0.

11



Now, in order to obtain the properties of β̂ such as mean, variance, distribution and so on, (2) is
rewritten as follows:

β̂ = (X′X)−1X′y = (X′X)−1X′(Xβ + u) = (X′X)−1X′Xβ + (X′X)−1X′u

= β + (X′X)−1X′u. (3)

Taking the expectation on both sides of (3), we have the following:

E(β̂) = E(β + (X′X)−1X′u) = β + (X′X)−1X′E(u) = β,

because of E(u) = 0 by the assumption of the error term ui.

Thus, unbiasedness of β̂ is shown.
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The variance of β̂ is obtained as:

V(β̂) = E((β̂ − β)(β̂ − β)′) = E
(
(X′X)−1X′u((X′X)−1X′u)′

)
= E((X′X)−1X′uu′X(X′X)−1) = (X′X)−1X′E(uu′)X(X′X)−1

= σ2(X′X)−1X′X(X′X)−1 = σ2(X′X)−1.

The first equality is the definition of variance in the case of vector.
In the fifth equality, E(uu′) = σ2In is used, which implies that E(u2

i ) = σ2 for all i and E(uiu j) = 0
for i , j.
Remember that u1, u2, · · ·, un are assumed to be mutually independently and identically distributed
with mean zero and variance σ2.
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Under normality assumption on the error term u, it is known that the distribution of β̂ is given by:

β̂ ∼ N(β, σ2(X′X)−1).

Proof:
First, when X ∼ N(µ,Σ), the moment-generating function, i.e., ϕ(θ), is given by:

ϕ(θ) ≡ E
(
exp(θ′X)

)
= exp

(
θ′µ +

1
2
θ′Σθ
)

θ: k × 1, u: n × 1, β̂: k × 1

The moment-generating function of u, i.e., ϕu(θ), is:

ϕu(θ) ≡ E
(
exp(θ′u)

)
= exp

(σ2

2
θ′θ
)
,

which is N(0, σ2In).
The moment-generating function of β̂, i.e., ϕβ(θ), is:

ϕβ(θ) ≡ E
(
exp(θ′β̂)

)
= E
(
exp(θ′β + θ′(X′X)−1X′u)

)
= exp(θ′β)E

(
exp(θ′(X′X)−1X′u)

)
= exp(θ′β)ϕu

(
θ′(X′X)−1X′

)
= exp(θ′β) exp

(σ2

2
θ′(X′X)−1θ

)
= exp

(
θ′β +

σ2

2
θ′(X′X)−1θ

)
,
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which is equivalent to the normal distribution with mean β and variance σ2(X′X)−1.
Note that θ is replaced by X(X′X)−1θ. QED
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Taking the jth element of β̂, its distribution is given by:

β̂ j ∼ N(β j, σ
2a j j), i.e.,

β̂ j − β j

σ
√a j j

∼ N(0, 1),

where a j j denotes the jth diagonal element of (X′X)−1.

Replacing σ2 by its estimator s2, we have the following t distribution:

β̂ j − β j

s√a j j
∼ t(n − k),

where t(n − k) denotes the t distribution with n − k degrees of freedom.
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