1 Some Formulas of Matrix Algebra

1. Let
$$
A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \cdots & a_{lk} \end{pmatrix} = [a_{ij}],
$$

which is a $l \times k$ matrix, where a_{ij} denotes *i*th row and *j*th column of *A*. The transposed matrix (転置行列) of *A*, denoted by *A* ′ , is defined as:

$$
A' = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{l1} \\ a_{12} & a_{22} & \cdots & a_{l2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1k} & a_{2k} & \cdots & a_{lk} \end{pmatrix} = [a_{ji}],
$$

where the *i*th row of *A* ′ is the *i*th column of *A*.

2. $(Ax)' = x'A'$,

where *A* and *x* are a $l \times k$ matrix and a $k \times 1$ vector, respectively.

3. $a' = a$,

where *a* denotes a scalar.

4.
$$
\frac{\partial a'x}{\partial x} = a,
$$

where *a* and *x* are *k* × 1 vectors.

5. If *A* is symmetric, $A = A'$.

$$
6. \ \frac{\partial x'Ax}{\partial x} = (A + A')x,
$$

where *A* and *x* are a $k \times k$ matrix and a $k \times 1$ vector, respectively.

Especially, when *A* is symmetric, ∂*x* ′*Ax* ∂*x* $= 2Ax$.

7. Let *A* and *B* be $k \times k$ matrices, and I_k be a $k \times k$ **identity matrix (単位行列)** (one in the diagonal elements and zero in the other elements).

When $AB = I_k$, *B* is called the **inverse matrix** (逆行列) of *A*, denoted by $B = A^{-1}$. That is, $AA^{-1} = A^{-1}A = I_k$.

8. Let *A* be a $k \times k$ matrix and *x* be a $k \times 1$ vector.

If *A* is a **positive definite matrix (正値定符号行列)**, for any *x* except for $x = 0$ we have:

 $x'Ax > 0.$

If *A* is a **positive semidefinite matrix (非負値定符号行列)**, for any *x* except for $x = 0$ we have:

 $x'Ax \geq 0.$

If *A* is a **negative definite matrix (負値定符号行列)**, for any *x* except for $x = 0$ we have:

```
x
′Ax < 0.
```
If *A* is a negative semidefinite matrix (非正値定符号行列), for any *x* except for $x = 0$ we have:

 $x'Ax \leq 0.$

Trace, Rank and etc.: $A : k \times k$, $B : n \times k$, $C : k \times n$.

1. The **trace**
$$
(\mathbf{F} \mathbf{L} - \mathbf{Z})
$$
 of *A* is: $\text{tr}(A) = \sum_{i=1}^{k} a_{ii}$, where $A = [a_{ij}]$.

- 2. The **rank** (ランク, 階数) of *A* is the maximum number of linearly independent column (or row) vectors of *A*, which is denoted by rank(*A*).
- 3. If *A* is an idempotent matrix (べき等行列), *A* = *A* 2 .
- 4. If *A* is an idempotent and symmetric matrix, $A = A^2 = A'A$.
- 5. *A* is idempotent if and only if the eigen values of *A* consist of 1 and 0.
- 6. If *A* is idempotent, rank $(A) = \text{tr}(A)$.

7. tr(BC) =tr(CB)

Distributions in Matrix Form:

1. Let *X*, μ and Σ be $k \times 1$, $k \times 1$ and $k \times k$ matrices.

When $X \sim N(\mu, \Sigma)$, the density function of *X* is given by:

$$
f(x) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right).
$$

 $E(X) = μ$ and $V(X) = E((X – μ)(X – μ)') = Σ$

The moment-generating function: $\phi(\theta) = E(\exp(\theta'X)) = \exp(\theta'\mu + \frac{1}{2})$ $rac{1}{2}$ θ'Σθ) (*) In the univariate case, when $X \sim N(\mu, \sigma^2)$, the density function of *X* is:

$$
f(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp(-\frac{1}{2\sigma^2}(x-\mu)^2).
$$

- 2. If $X \sim N(\mu, \Sigma)$, then $(X \mu)' \Sigma^{-1} (X \mu) \sim \chi^2(k)$. Note that $X'X \sim \chi^2(k)$ when $X \sim N(0, I_k)$.
- 3. *X*: *n* × 1, *Y*: *m* × 1, *X* ∼ *N*(μ_x , Σ_x), *Y* ∼ *N*(μ_y , Σ_y)

X is independent of *Y*, i.e., $E((X - \mu_X)(Y - \mu_Y)') = 0$ in the case of normal random variables.

$$
\frac{(X-\mu_{x})'\Sigma_{x}^{-1}(X-\mu_{x})/n}{(Y-\mu_{y})'\Sigma_{y}^{-1}(Y-\mu_{y})/m} \sim F(n,m)
$$

4. If $X \sim N(0, \sigma^2 I_n)$ and *A* is a symmetric idempotent $n \times n$ matrix of rank *G*, then $X'AX/\sigma^2 \sim$ $\chi^2(G)$.

Note that $X'AX = (AX)'(AX)$ and $rank(A) = tr(A)$ because *A* is idempotent.

5. If $X \sim N(0, \sigma^2 I_n)$, *A* and *B* are symmetric idempotent $n \times n$ matrices of rank *G* and *K*, and $AB = 0$, then

$$
\frac{X'AX}{G\sigma^2} / \frac{X'BX}{K\sigma^2} = \frac{X'AX/G}{X'BX/K} \sim F(G, K).
$$

2 Multiple Regression Model (重回帰モデル)

Up to now, only one independent variable, i.e., x_i , is taken into the regression model. We extend it to more independent variables, which is called the **multiple regression model** (重回 帰モデル).

We consider the following regression model:

$$
y_i = \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_k x_{i,k} + u_i = (x_{i,1}, x_{i,2}, \dots, x_{i,k}) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix} + u_i = x_i \beta + u_i,
$$

for $i = 1, 2, \dots, n$, where x_i and β denote a $1 \times k$ vector of the independent variables and a $k \times 1$ vector of the unknown parameters to be estimated, which are given by:

$$
x_i = (x_{i,1}, x_{i,2}, \dots, x_{i,k}), \qquad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix}.
$$

 $x_{i,j}$ denotes the *i*th observation of the *j*th independent variable.

The case of $k = 2$ and $x_{i,1} = 1$ for all *i* is exactly equivalent to (??). Therefore, the matrix form above is a generalization of $(?)$. Writing all the equations for $i = 1, 2, \dots, n$, we have:

$$
y_1 = \beta_1 x_{1,1} + \beta_2 x_{1,2} + \dots + \beta_k x_{1,k} + u_1 = x_1 \beta + u_1,
$$

\n
$$
y_2 = \beta_1 x_{2,1} + \beta_2 x_{2,2} + \dots + \beta_k x_{2,k} + u_2 = x_2 \beta + u_2,
$$

\n
$$
\vdots
$$

\n
$$
y_n = \beta_1 x_{n,1} + \beta_2 x_{n,2} + \dots + \beta_k x_{n,k} + u_n = x_n \beta + u_n,
$$

which is rewritten as:

$$
\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,k} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,k} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix} + \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}
$$

$$
= \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \beta + \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}.
$$

Again, the above equation is compactly rewritten as:

$$
y = X\beta + u,\tag{1}
$$

where *y*, *X* and *u* are denoted by:

$$
y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \qquad X = \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,k} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,k} \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \qquad u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}.
$$

Utilizing the matrix form (1), we derive the ordinary least squares estimator of β , denoted by $\hat{\beta}$. In (1), replacing β by $\hat{\beta}$, we have the following equation:

$$
y = X\hat{\beta} + e,
$$

where *e* denotes a $n \times 1$ vector of the residuals.

The *i*th element of *e* is given by *eⁱ* .

The sum of squared residuals is written as follows:

$$
S(\hat{\beta}) = \sum_{i=1}^{n} e_i^2 = e'e = (y - X\hat{\beta})'(y - X\hat{\beta}) = (y' - \hat{\beta}'X')(y - X\hat{\beta})
$$

$$
= y'y - y'X\hat{\beta} - \hat{\beta}'X'y + \hat{\beta}'X'X\hat{\beta} = y'y - 2y'X\hat{\beta} + \hat{\beta}'X'X\hat{\beta}.
$$

In the last equality, note that $\hat{\beta}' X' y = y' X \hat{\beta}$ because both are scalars. To minimize $S(\hat{\beta})$ with respect to $\hat{\beta}$, we set the first derivative of $S(\hat{\beta})$ equal to zero, i.e.,

$$
\frac{\partial S(\hat{\beta})}{\partial \hat{\beta}} = -2X'y + 2X'X\hat{\beta} = 0.
$$

Solving the equation above with respect to $\hat{\beta}$, the **ordinary least squares estimator (OLS, 最小 自乗推定**量) of β is given by:

$$
\hat{\beta} = (X'X)^{-1}X'y.
$$
\n⁽²⁾

Thus, the ordinary least squares estimator is derived in the matrix form.

(*) Remark

The second order condition for minimization:

$$
\frac{\partial^2 S(\hat{\beta})}{\partial \hat{\beta} \partial \hat{\beta}'} = 2X'X
$$

is a positive definite matrix.

Set $c = Xd$.

For any $d \neq 0$, we have $c'c = d'X'Xd > 0$.

Now, in order to obtain the properties of $\hat{\beta}$ such as mean, variance, distribution and so on, (2) is rewritten as follows:

$$
\hat{\beta} = (X'X)^{-1}X'y = (X'X)^{-1}X'(X\beta + u) = (X'X)^{-1}X'X\beta + (X'X)^{-1}X'u
$$

= $\beta + (X'X)^{-1}X'u$. (3)

Taking the expectation on both sides of (3), we have the following:

$$
E(\hat{\beta}) = E(\beta + (X'X)^{-1}X'u) = \beta + (X'X)^{-1}X'E(u) = \beta,
$$

because of $E(u) = 0$ by the assumption of the error term u_i .

Thus, unbiasedness of $\hat{\beta}$ is shown.

The variance of $\hat{\beta}$ is obtained as:

$$
V(\hat{\beta}) = E((\hat{\beta} - \beta)(\hat{\beta} - \beta)') = E((X'X)^{-1}X'u((X'X)^{-1}X'u)')
$$

= E((X'X)^{-1}X'uu'X(X'X)^{-1}) = (X'X)^{-1}X'E(uu')X(X'X)^{-1}
= \sigma^2(X'X)^{-1}X'X(X'X)^{-1} = \sigma^2(X'X)^{-1}.

The first equality is the definition of variance in the case of vector.

In the fifth equality, $E(uu') = \sigma^2 I_n$ is used, which implies that $E(u_i^2) = \sigma^2$ for all *i* and $E(u_iu_j) = 0$ for $i \neq j$.

Remember that u_1, u_2, \dots, u_n are assumed to be mutually independently and identically distributed with mean zero and variance σ^2 .

Under normality assumption on the error term *u*, it is known that the distribution of $\hat{\beta}$ is given by:

$$
\hat{\beta} \sim N(\beta, \sigma^2 (X'X)^{-1}).
$$

Proof:

First, when $X \sim N(\mu, \Sigma)$, the moment-generating function, i.e., $\phi(\theta)$, is given by:

$$
\phi(\theta) \equiv \mathcal{E}(\exp(\theta'X)) = \exp(\theta'\mu + \frac{1}{2}\theta'\Sigma\theta)
$$

 θ : $k \times 1$, u : $n \times 1$, β : $k \times 1$

The moment-generating function of *u*, i.e., $\phi_u(\theta)$, is:

$$
\phi_u(\theta) \equiv \mathrm{E} \Big(\exp(\theta' u) \Big) = \exp \Big(\frac{\sigma^2}{2} \theta' \theta \Big),
$$

which is $N(0, \sigma^2 I_n)$.

The moment-generating function of $\hat{\beta}$, i.e., $\phi_B(\theta)$, is:

$$
\phi_{\beta}(\theta) = \mathcal{E}(\exp(\theta'\hat{\beta})) = \mathcal{E}(\exp(\theta'\beta + \theta'(X'X)^{-1}X'u))
$$

= $\exp(\theta'\beta)\mathcal{E}(\exp(\theta'(X'X)^{-1}X'u)) = \exp(\theta'\beta)\phi_{u}(\theta'(X'X)^{-1}X')$
= $\exp(\theta'\beta)\exp(\frac{\sigma^2}{2}\theta'(X'X)^{-1}\theta) = \exp(\theta'\beta + \frac{\sigma^2}{2}\theta'(X'X)^{-1}\theta),$

which is equivalent to the normal distribution with mean β and variance $\sigma^2(X'X)^{-1}$. Note that θ is replaced by $X(X'X)^{-1}$ θ . QED Taking the *j*th element of $\hat{\beta}$, its distribution is given by:

$$
\hat{\beta}_j \sim N(\beta_j, \sigma^2 a_{jj}),
$$
 i.e., $\frac{\hat{\beta}_j - \beta_j}{\sigma \sqrt{a_{jj}}} \sim N(0, 1),$

where a_{jj} denotes the *j*th diagonal element of $(X'X)^{-1}$.

Replacing σ^2 by its estimator s^2 , we have the following *t* distribution:

$$
\frac{\hat{\beta}_j - \beta_j}{s\sqrt{a_{jj}}} \sim t(n-k),
$$

where $t(n - k)$ denotes the *t* distribution with $n - k$ degrees of freedom.