[Review] Trace (kL —X):

1. A:nxn, tr(A)= Y, a; where q;; denotes an element in the ith row and the jth column
of a matrix A.

2. a:scalar (1 x1), tr(a)=a

3. AinXk, B:kxn, ttr(AB)=tr(BA)

4. r(X(X'X)'X") = tr(X’X)' X' X) = tr([y) = k

5. When X is a square matrix of random variables, E(tr(AX)) = tr(AE(X))

End of Review
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s2 is taken as follows:

1 <& 1 1 . .
2= 2 = 'e= ——(y—XB)'(y - X,
= gl e =-—— e n_k(y B (y — XP),

which leads to an unbiased estimator of o2.

Proof:
Substitute y = XB+uand B = B+ (X’X)"'X'uinto e = y — XB.
e=y—-XB=XB+u—-XPB+XX)"'Xu)

=u—-XX'X)'Xu=~U,-XXX)'X)u

I, — X(X’X)"'X’ is idempotent and symmetric, because we have:
(L, - XX'X)'X)UI, - XX'X)"'X) =1, - XX'X)"'X',
L, - XX'X)'X'Y =1, - XX'X)"'X'.

s? is rewritten as follows:

1 1
§7 = ce= —k((l,, —XX'X)' X', - X(X'X)"' X )u
n —
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1
= ku’(ln - XX'X)'XY U, - XX'X)' X )u
n —

1
= W', - XX'X)' X u
n—-~k

Take the expectation of (I, — X(X’X)"'X")u and note that tr(a) = a for a scalar a.

E(s?) = L}(E(tr(u’(ln - X(X'X) "' X' )u)) = ﬁE(tr((In - X(X'X) " X ')

1 / - / ’ 1 / - /

= — ktr((ln — X(X’X)"' X")E(uu )) = n—_kaztr((ln ~X(X'X)"'X )In)

= Laztr(l,, -XX'X)'Xx') = L&(tr(ln) —tr(X(X’X)"'X"))
n—=k n—=k

= L) - (XX XX)) = ——o2(tx(l) — (1)
n—k n—-k
= i k0'2(n —k) = o?

—> 5% is an unbiased estimator of 0.
Note that we do not need normality assumption for unbiasedness of s°.

[Review]
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X’'X ~ ¥2(n) for X ~ N(O, 1,).

(X = w2 (X = 1) ~ x*(n) for X ~ N(u, X).

X'X
— ~ x(n) for X ~ N(0,0?I).
g

X'AX .
° — ~ ¥*(G), where X ~ N(0,0?1I,) and A is a symmetric idempotent 7 X n matrix of rank
o
G <n.

Remember that G = Rank(A) = tr(A) when A is symmetric and idempotent.
[End of Review]
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Under normality assumption for u, the distribution of s? is:

_ 2 ’ _ ’ -1y
(l’l O-];)S _ u (In X(O-)(ZX) X )I/t ~)(2(tr(1n _X(X/X)—le))

Note that  tr(l, — X(X’X)"'X’) = n — k, because

tr(l,) = n
tr(X(X'X)7'X") = tr(X’ X)X’ X) = te(Ip) = k
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Asymptotic Normality (without normality assumption on #): Using the central limit theorem,

without normality assumption we can show that as n — oo, under the condition of - X'X — M
n
we have the following result:

A

Bi—B;j

Sajj

— N, D),

where M denotes a k X k constant matrix.

Thus, we can construct the confidence interval and the testing procedure, using the ¢ distribution
under the normality assumption or the normal distribution without the normality assumption.

3 Properties of OLSE

1. Properties of 3 : BLUE (best linear unbiased estimator, & BIFTARHETER), ic.,
minimum variance within the class of linear unbiased estimators (Gauss-Markov theorem,

HORX - QILIATDFEE)

Proof:
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Consider another linear unbiased estimator, which is denoted by 8 = Cy.
B =Cy=CXB+u)=CXB+Cu,

where C is a k X n matrix.

Taking the expectation of 3, we obtain:
E(3) = CXB + CE(u) = CXp3

Because we have assumed that 5 = Cy is unbiased, E(3) = 8 holds.
That is, we need the condition: CX = I,.

Next, we obtain the variance of 3 = Cy.
B=CXB+u)=p+Cu.

Therefore, we have:
V(@B) =E(B-BB~-p)) = E(CudC") = a>CC’
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Defining C = D + (X’X)"'X’, V(B) is rewritten as:
V(B) = o’CC' =D+ X'X)"' XD+ (X'X)"'X').
Moreover, because ,3 is unbiased, we have the following:
CX=1I,=D+XX)'X)X = DX +I,.
Therefore, we have the following condition:
DX = 0.
Accordingly, V(B) is rewritten as:
V(B) = ’CC' = (D + (X' X)'X)D + (X' X)"'X"Y
= 2(X’X)"' + o*DD’ = V(B) + o*DD’
Thus, for D # 0, V(B) — V(B) is a positive definite matrix.
= V(B) - V(B) > 0

= [ 1s a minimum variance (i.e., best) linear unbiased estimator of .
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Note as follows:
— A is positive definite when d’Ad > 0 except d = 0.

— The ith diagonal element of A, i.e., a;;, is positive (choose d such that the ith element of
d is one and the other elements are zeros).

[Review] F Distribution:

Suppose that U ~ y(n), V ~ y(m), and U is independent of V.
U/n
Then, — ~ F .
e Vi (n,m)
[End of Review]
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F Distribution (H, : = 0): Final Result in this Section:

B-BX'XPB-p)k
ee/(n—k)

~ F(k,n—k).

Consider the numerator and the denominator, separately.

1. Ifu ~ N(0,0%1,), then 8 ~ N(B, c*(X'X)™") .

Therefore, ® —,3)’);'2)( ) ~ /\/Z(k).

2. Proof:
Using 3 — 8 = (X’X)~' X"u, we obtain:
B-BXXPB-B)=(XX)"'XuyXXX'X)"'Xu
= XX'X)'XXX'X) ' X'u=uXX'X)"'X'u
Note that X(X’X)~'X’ is symmetric and idempotent, i.e., A’A = A.

WXX'X)' X u
o2

~ (XXX X))
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The degree of freedom is given by:
tr(X(X'X)™' X)) = tr(X’X) ' X' X) = tr(ly) = k

Therefore, we obtain:

wWXX' X)X u
o2 -

X (k)

. (*) Formula:

Suppose that X ~ N(0, I;).

If A is symmetric and idempotent, i.e., A’A = A, then X’AX ~ y*(tr(A)).

1
Here, X = —u ~ N(0, 1)) from u ~ N(0,0*1,), and A = X(X'X)"'X".
o
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4. Sum of Residuals: e is rewritten as:
e=,-XX'X)"'X)u.
Therefore, the sum of residuals is given by:
ee=u(l,- XX'X)"'X)u.

Note that I, — X(X’X)"'X’ is symmetric and idempotent.

We obtain the following result:

e W, -XX'X)"'X)u
o o2

~ (- XX X)7'X)),
where the trace is:
tr(l, - X(X’X)'X)=n—k.

Therefore, we have the following result:

e  (n—k)s
PR ~x'(n - k),
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where

5. We show that 3 is independent of e.
Proof:

Because u ~ N(0, 021,), we show that Cov(e, 8) = 0.

Cov(e.B) = E(e(B ) = E((L, = XX'X)"' X yu(X'X) "' X' )
= B((I, - X(X'X)"' X' X(X'X)™") = (I, - X(X'X) " X )E(u ) X(X'X)'
=, - XX'X)'X)I)XX'X) = o’ (U, - XX'X) ' XH)X(X'X)™!
= XX'X)!' - XX X)X XX’ X)) = XX X)) - XX’ X)) = 0.

B is independent of e, because of normality assumption on u

[Review]
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e Suppose that X is independent of Y. Then, Cov(X, Y) = 0. However, Cov(X, Y) = 0 does
not mean in general that X is independent of Y.

e In the case where X and Y are normal, Cov(X, Y) = O indicates that X is independent of Y.

[End of Review]
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[Review] Formulas — F Distribution:

U
° W/IZ ~ F(n,m) when U

simy*(n), V ~ x*(m), and U is independent of V.
e When X ~ N(0, 1,), A and B are n X n symmetric idempotent matrices, Rank(A) = tr(A) =
X'AX/G
G, Rank(B) = tr(B) = K and AB = 0, then —/ ~ F(G,K).
X'BX/K
Note that the covariance of AX and BX is zero, which implies that AX is independent of BX
under normality of X.

[End of Review]
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6. Therefore, we obtain the following distribution:
B-BYX'XB-B) wWXX'X)'Xu
(ﬁ ﬁ : (ﬁ ﬁ — . "'Xz(k),
o o

e  uw(l,-XX'X)'X)u
= 5 ~ X (n =k

o2 o
B is independent of e, because X(X’X)~'X’(I, - X(X’X)"'X’) = 0.

Accordingly, we can derive:

B-pYX'XPB-p)
. [k

B—B)X'X(B - Pk
o _BBXXBPkp gy
s
=5
B'X'XpB[k
Under the null hypothesis Hy : 5 =0, ’B—Z’W ~ F(k,n — k).
B'X' X[k
Given data, M is compared with F(k,n — k).
B'X'XB/k
If u is in the tail of the F distribution, the null hypothesis is rejected.
s

32



Coefficient of Determination GRERE), R?:

nog?
1. Definition of the Coefficient of Determination, R*>: R*>=1 — #’_2
Zi:l(yi -y

n

2. Numerator: E e =¢e
i=1

d 1 1 1
3. Denominator: Z(y,- Y2 =y, — il Y, — ~ii")y = y'(I, — —ii’)y
— n n n

(*) Remark
yi—y i y
Y2 .—5 _ )’.2 _ i —y- lii’y =, - 1ii')y,
: : : n n
Yn— y Yn y

wherei = (1,1,---,1)".

e

4. In a matrix form, we can rewrite as: RZ=1— —
', = i)y
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F Distribution and Coefficient of Determination:

=— This will be discussed later.
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Testing Linear Restrictions (F Distribution):
1. Ifu ~ N(0,01,), then 8 ~ N(B, c*(X'X)™") .
Consider testing the hypothesis Hy : RG = r.
R: GXxk, rank(R) = G < k.
RB ~ N(RB, *R(X'X)"'R").

N\ =1 p-lpa _
(RB—1) (R(XX)2 R) (RB—1) < 6.

Therefore,
o

Note that RG = r .
(a) When 8 ~ N(B, c(X’X)™"), the mean of R is:
E(RB) = RE(B) = RB.
(b) When,@ ~ N(B,*(X’X)™"), the variance of RB 1s:
V(RB) = E((RB - RB)(RB - RBY) = ER(B - B)(B - B)'R)
= RE(B-PB)B-PBY)R =RVPR = c?RX'X)"'R".
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—k 2 ’ _XA/ _XA
2. We know that Z— 9% _ ¢¢ _ W XDWZXD) 2,y
g (o g

3. Under normality assumption on u, 3 is independent of e.

4. Therefore, we have the following distribution:

(RB—rY(RX'X)"'R) ' (RB-1)/G
- XBY(y - XB)/(n — k)

~ F(G,n-k)
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5. Some Examples:

(a) t Test:

The caseof G=1,r=0and R = (0,---,1,---,0) (the ith element of R is one and the
other elements are zero):

The test of Hy : 5; = 0 is given by:
RB-rRX'X)'R)Y'RB-1IG _ B
52  S2ay
where s = ¢’e/(n — k), RB = f3; and
a; = R(X’X)™'R’ = the i row and ith column of (X’X)~!.
*) Recall that Y ~ F(1, m) when X ~ #(m) and Y = X>.

Therefore, the test of Hy : B; = 0 is given by:

A

Bi
s

~ t(n — k).
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(b) Test of structural change (Part 1):

y; = XiB1
l Xif2

Assume that u; ~ N(0, 02).

In a matrix form,

Y1
2

Ym
Ym+1
Ym+2

Yn

+u, i=1,2,---.m

+u, i=m+1l,m+2,---

X1 0
X 0
X 0
0 Xm+1
0 Xm+2
0 X,

Moreover, rewriting,

=5 )6

(ﬁ1
B>

)

uy
7%

U
Um+1

Um+2

Uy
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Again, rewriting,
Y=XB+u
The null hypothesis is Hy : 81 = S».
Apply the F test,using R = (Iy —1I;)and r = 0.
In this case, G = rank(R) = k and S is a 2k X 1 vector.
The distribution is F(k,n — 2k).
(c) The hypothesis in which sum of the 1st and 2nd coefficients is equal to one:
R=(1,1,0,---,0),r=1
In this case, G = rank(R) = 1
The distribution of the test statistic is F(1,n — k).
(d) Testing seasonality:
In the case of quarterly data (F94HA7 —#), the regression model is:

y:a+alD1+a/2D2+a/3D3+X,80+u

D; = 1inthe jth quarter and O otherwise, i.e., D;, j = 1,2,3, are seasonal dummy
variables.
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Testing seasonality = Hy: a; =a; = a3 =0

a

a 01000 0
B=|a|, R=|0 0 1 0 0 0], r:{

a3 00010 0

Bo

In this case, G = rank(R) = 3, and B is a k X 1 vector.
The distribution of the test statistic is F'(3,n — k).

(e) Cobb-Douglas Production Function:
Let Q;, K; and L; be production, capital stock and labor.

We estimate the following production function:

log(Qy) = 1 + B2 log(Ky) + B3 log(Ly) + u;.
We test a linear homogeneous (—>X[A]X) production function.

The null and alternative hypotheses are:

Hy: By +p5=1,
H11,82+ﬁ3¢1.
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®

Then, set as follows:
R=(0 1 1), r=1.

Test of structural change (Part 2):

Test the structural change between time periods m and m + 1.

In the case where both the constant term and the slope are changed, the regression
model is as follows:

yi=«a +ﬁx,~ + ’ydl + 5dl-xl- + u;,

where

J = 0, fori=1,2,---,m,
11, fori=m+1,m+2,---,n.

We consider testing the structural change at time m + 1.

The null and alternative hypotheses are as follows:

Hy: y=6=0,
H : yv#0,o0r,0#0.
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Then, set as follows:

' 0 010 (0
“looo 1) "o
(g) Multiple regression model:
Consider the case of two explanatory variables:
Vi =+ X+ vz +u;

We want to test the hypothesis that neither x; nor z; depends on y;.

In this case, the null and alternative hypotheses are as follows:

Hy: p=vy=0,
H : B#0, or, y #0.

Then, set as follows:

c3t) ()
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Coefficient of Determination R? and F distribution:

@ The regression model:

i = xB+u; =1+ x6 +u;

where
,31)
xi=01 xy), =( s
i P,
x; o 1 Xk, Xyt I x((k=1), B: kxl1,
Define:
X21

X22
X2 = .

Xon
Then,

B

y=XB+u=_=» XZ)(ﬁz

43
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where the first column of X corresponds to a constant term, i.e.,
1
. . |1
X=(0( X,), i=]|.
1
@ Consider testing Hy : S = 0.
The F distribution is set as follows:

R=(0 L), r=0
where Ris a (k — 1) X k matrix and ris a (k — 1) X 1 vector.

(RB—rY(RX'X)"'R) " (RB—r)/(k—1)
eel/(n—k)

~ Fk—1,n—-k)

We are going to show:

(RB =) RX'X)'R)(RB = r) = B,Xs MXops,
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1
where M = I, — —ii’.
n

Note that M is symmetric and idempotent, i.e., M'M = M.

yi—Yy
yz.—y = My
Yn =y

R(X’X)"'R’ is given by:

y o
R(X’X)_IR, = (0 Ik—l )(( )l(/ )(l X2 )) (Ik 1 )
! _

i X\ 0
=(0 Ik—l)(X,. ,2) ( )
21 X2X2 Ik—l
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[Review] The inverse of a partitioned matrix:

A A
A :( 1 12)’
Ay Ax

where A;; and A,, are square nonsingular matrices.

Al = ( By, —BnAle;; )
_AEZIAZIBII AEZI +A521A21311A12A£21 ’

where By, = (A1; — ApAy, Ayy) 7!, or alternatively,

A = (Al_ll + A7 ABnAy AT —AﬁlAlszz)
—BynAyAY By

where By, = (A — Ay A7} A
[End of Review]
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Go back to the F distribution.
vi X\ (-
X XpXo) o\ (XXe - XG0 X)) !

:(3 (Xé(ln—%ii’)Xz)‘l):(f (X;MXQ)*)

Therefore, we obtain:

i X\ (0
(0 Ik—l)(X,. ,2) ( )
)l X2X2 Ik—l

=(0 Ly )( = (X;MX,)™".

e 0
(XM X,)™ ) (Ik—l )
Thus, under Hy : B, = 0, we obtain the following result:

(Rﬁ _ r),(R(X/X)—lR/)—l(Rﬁ _ I’)/(k — 1) B BéXéMXZBZ/(k - 1)
cef(n—K) I

~ F(k—=1,n-k).
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@ Cocflicient of Determination R2:

Define e as e = y — Xf3. The coefficient of determinant, R?, is
RP=1- ﬁ
y' My

where M = I, — —ii’, I, is a n X n identity matrix and i is a n X 1 vector consisting of 1, i.e.,
n
i=,1,---,1).

Me = My — MX§B.

When X = (i Xz)andﬁ:(él),
B>
Me = e,
because i’e = 0, and
MX=M({ X)=(Mi MX)=(0 MX;),

because Mi = 0.

A

MXB = (0 MXz)('gl ) = MXop.
2
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Thus,
My = MXJ3 + Me — My = MX,f3, + e.

y' My is given by: yMy = B’ZXQMXzﬁz + €’e, because Xje = 0 and Me = e.
The coefficient of determinant, R?, is rewritten as:

ee
y'My

R*=1- = ee =(1-R>)y' My,

_YMy-eée ﬁ’zXéMXZ[SZ

R? B, X' MX-B> = R*Y My.
y/My y/My ﬁZ 2 ZﬁZ y y
Therefore,
PXMXPofh=1)  RYMyk=1) _ RK=D
ee/(n —k) C(1=-R)yMy/(n—k) (1-R?)/(n—k) ’ '

Thus, using R?, the null hypothesis Hy : 8, = 0 is easily tested.
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