[Review] Trace $(\vdash \lor \vdash Z)$:

- 1. A: $n \times n$, $tr(A) = \sum_{i=1}^{n} a_{ii}$, where a_{ij} denotes an element in the *i*th row and the *j*th column of a matrix A.
- 2. a: scalar (1×1) , tr(a) = a
- 3. A: $n \times k$, B: $k \times n$, tr(AB) = tr(BA)
- 4. $\operatorname{tr}(X(X'X)^{-1}X') = \operatorname{tr}((X'X)^{-1}X'X) = \operatorname{tr}(I_k) = k$
- 5. When *X* is a square matrix of random variables, E(tr(AX)) = tr(AE(X))

End of Review

 s^2 is taken as follows:

$$s^{2} = \frac{1}{n-k} \sum_{i=1}^{n} e_{i}^{2} = \frac{1}{n-k} e' e = \frac{1}{n-k} (y - X\hat{\beta})' (y - X\hat{\beta}),$$

which leads to an unbiased estimator of σ^2 .

Proof:

Substitute $y = X\beta + u$ and $\hat{\beta} = \beta + (X'X)^{-1}X'u$ into $e = y - X\hat{\beta}$.

$$e = y - X\hat{\beta} = X\beta + u - X(\beta + (X'X)^{-1}X'u)$$

= $u - X(X'X)^{-1}X'u = (I_n - X(X'X)^{-1}X')u$

 $I_n - X(X'X)^{-1}X'$ is idempotent and symmetric, because we have:

$$(I_n - X(X'X)^{-1}X')(I_n - X(X'X)^{-1}X') = I_n - X(X'X)^{-1}X',$$

$$(I_n - X(X'X)^{-1}X')' = I_n - X(X'X)^{-1}X'.$$

 s^2 is rewritten as follows:

$$s^{2} = \frac{1}{n-k}e'e = \frac{1}{n-k}((I_{n} - X(X'X)^{-1}X')u)'(I_{n} - X(X'X)^{-1}X')u$$

$$= \frac{1}{n-k} u' (I_n - X(X'X)^{-1}X')' (I_n - X(X'X)^{-1}X') u$$

= $\frac{1}{n-k} u' (I_n - X(X'X)^{-1}X') u$

Take the expectation of $u'(I_n - X(X'X)^{-1}X')u$ and note that tr(a) = a for a scalar a.

$$E(s^{2}) = \frac{1}{n-k} E\left(tr\left(u'(I_{n} - X(X'X)^{-1}X')u\right)\right) = \frac{1}{n-k} E\left(tr\left((I_{n} - X(X'X)^{-1}X')uu'\right)\right)$$

$$= \frac{1}{n-k} tr\left((I_{n} - X(X'X)^{-1}X')E(uu')\right) = \frac{1}{n-k} \sigma^{2} tr\left((I_{n} - X(X'X)^{-1}X')I_{n}\right)$$

$$= \frac{1}{n-k} \sigma^{2} tr(I_{n} - X(X'X)^{-1}X') = \frac{1}{n-k} \sigma^{2} (tr(I_{n}) - tr(X(X'X)^{-1}X'))$$

$$= \frac{1}{n-k} \sigma^{2} (tr(I_{n}) - tr((X'X)^{-1}X'X)) = \frac{1}{n-k} \sigma^{2} (tr(I_{n}) - tr(I_{k}))$$

$$= \frac{1}{n-k} \sigma^{2} (n-k) = \sigma^{2}$$

 \rightarrow s² is an unbiased estimator of σ^2 .

Note that we do not need normality assumption for unbiasedness of s^2 .

[Review]

- $X'X \sim \chi^2(n)$ for $X \sim N(0, I_n)$.
- $(X \mu)' \Sigma^{-1} (X \mu) \sim \chi^2(n)$ for $X \sim N(\mu, \Sigma)$.
- $\frac{X'X}{\sigma^2} \sim \chi^2(n)$ for $X \sim N(0, \sigma^2 I_n)$.
- $\frac{X'AX}{\sigma^2} \sim \chi^2(G)$, where $X \sim N(0, \sigma^2 I_n)$ and A is a symmetric idempotent $n \times n$ matrix of rank $G \le n$.

Remember that G = Rank(A) = tr(A) when A is symmetric and idempotent.

[End of Review]

Under normality assumption for u, the distribution of s^2 is:

$$\frac{(n-k)s^2}{\sigma^2} = \frac{u'(I_n - X(X'X)^{-1}X')u}{\sigma^2} \sim \chi^2(\text{tr}(I_n - X(X'X)^{-1}X'))$$

Note that $tr(I_n - X(X'X)^{-1}X') = n - k$, because

$$tr(I_n) = n$$

 $tr(X(X'X)^{-1}X') = tr((X'X)^{-1}X'X) = tr(I_k) = k$

Asymptotic Normality (without normality assumption on u): Using the central limit theorem, without normality assumption we can show that as $n \to \infty$, under the condition of $\frac{1}{n}X'X \to M$ we have the following result:

$$\frac{\hat{\beta}_j - \beta_j}{s \sqrt{a_{jj}}} \longrightarrow N(0, 1),$$

where M denotes a $k \times k$ constant matrix.

Thus, we can construct the confidence interval and the testing procedure, using the t distribution under the normality assumption or the normal distribution without the normality assumption.

3 Properties of OLSE

1. Properties of $\hat{\beta}$: BLUE (best linear unbiased estimator, 最良線形不偏推定量), i.e., minimum variance within the class of linear unbiased estimators (Gauss-Markov theorem, ガウス・マルコフの定理)

Proof:

Consider another linear unbiased estimator, which is denoted by $\tilde{\beta} = Cy$.

$$\tilde{\beta} = Cy = C(X\beta + u) = CX\beta + Cu,$$

where C is a $k \times n$ matrix.

Taking the expectation of $\tilde{\beta}$, we obtain:

$$E(\tilde{\beta}) = CX\beta + CE(u) = CX\beta$$

Because we have assumed that $\tilde{\beta} = Cy$ is unbiased, $E(\tilde{\beta}) = \beta$ holds.

That is, we need the condition: $CX = I_k$.

Next, we obtain the variance of $\tilde{\beta} = Cy$.

$$\tilde{\beta} = C(X\beta + u) = \beta + Cu.$$

Therefore, we have:

$$V(\tilde{\beta}) = E((\tilde{\beta} - \beta)(\tilde{\beta} - \beta)') = E(Cuu'C') = \sigma^2CC'$$

Defining $C = D + (X'X)^{-1}X'$, $V(\tilde{\beta})$ is rewritten as:

$$V(\tilde{\beta}) = \sigma^2 CC' = \sigma^2 (D + (X'X)^{-1}X')(D + (X'X)^{-1}X')'.$$

Moreover, because $\hat{\beta}$ is unbiased, we have the following:

$$CX = I_k = (D + (X'X)^{-1}X')X = DX + I_k.$$

Therefore, we have the following condition:

$$DX = 0.$$

Accordingly, $V(\tilde{\beta})$ is rewritten as:

$$V(\tilde{\beta}) = \sigma^{2}CC' = \sigma^{2}(D + (X'X)^{-1}X')(D + (X'X)^{-1}X')'$$
$$= \sigma^{2}(X'X)^{-1} + \sigma^{2}DD' = V(\hat{\beta}) + \sigma^{2}DD'$$

Thus, for $D \neq 0$, $V(\tilde{\beta}) - V(\hat{\beta})$ is a positive definite matrix.

$$\Longrightarrow V(\tilde{\beta}_i) - V(\hat{\beta}_i) > 0$$

 $\Longrightarrow \hat{\beta}$ is a minimum variance (i.e., best) linear unbiased estimator of β .

Note as follows:

 \implies A is positive definite when d'Ad > 0 except d = 0.

 \implies The *i*th diagonal element of A, i.e., a_{ii} , is positive (choose d such that the *i*th element of d is one and the other elements are zeros).

[Review] F Distribution:

Suppose that $U \sim \chi(n)$, $V \sim \chi(m)$, and U is independent of V.

Then, $\frac{U/n}{V/m} \sim F(n, m)$.

[End of Review]

F Distribution ($H_0: \beta = 0$): Final Result in this Section:

$$\frac{(\hat{\beta} - \beta)'X'X(\hat{\beta} - \beta)/k}{e'e/(n-k)} \sim F(k, n-k).$$

Consider the numerator and the denominator, separately.

1. If $u \sim N(0, \sigma^2 I_n)$, then $\hat{\beta} \sim N(\beta, \sigma^2 (X'X)^{-1})$. Therefore, $\frac{(\hat{\beta} - \beta)' X' X (\hat{\beta} - \beta)}{\sigma^2} \sim \chi^2(k)$.

2. **Proof:**

Using $\hat{\beta} - \beta = (X'X)^{-1}X'u$, we obtain:

$$(\hat{\beta} - \beta)'X'X(\hat{\beta} - \beta) = ((X'X)^{-1}X'u)'X'X(X'X)^{-1}X'u$$

= $u'X(X'X)^{-1}X'X(X'X)^{-1}X'u = u'X(X'X)^{-1}X'u$

Note that $X(X'X)^{-1}X'$ is symmetric and idempotent, i.e., A'A = A.

$$\frac{u'X(X'X)^{-1}X'u}{\sigma^2} \sim \chi^2 \Big(\operatorname{tr}(X(X'X)^{-1}X') \Big)$$

The degree of freedom is given by:

$$tr(X(X'X)^{-1}X') = tr((X'X)^{-1}X'X) = tr(I_k) = k$$

Therefore, we obtain:

$$\frac{u'X(X'X)^{-1}X'u}{\sigma^2} \sim \chi^2(k)$$

3. (*) Formula:

Suppose that $X \sim N(0, I_k)$.

If A is symmetric and idempotent, i.e., A'A = A, then $X'AX \sim \chi^2(\operatorname{tr}(A))$.

Here,
$$X = \frac{1}{\sigma}u \sim N(0, I_n)$$
 from $u \sim N(0, \sigma^2 I_n)$, and $A = X(X'X)^{-1}X'$.

4. **Sum of Residuals:** *e* is rewritten as:

$$e = (I_n - X(X'X)^{-1}X')u.$$

Therefore, the sum of residuals is given by:

$$e'e = u'(I_n - X(X'X)^{-1}X')u.$$

Note that $I_n - X(X'X)^{-1}X'$ is symmetric and idempotent.

We obtain the following result:

$$\frac{e'e}{\sigma^2} = \frac{u'(I_n - X(X'X)^{-1}X')u}{\sigma^2} \sim \chi^2 \Big(\text{tr}(I_n - X(X'X)^{-1}X') \Big),$$

where the trace is:

$$tr(I_n - X(X'X)^{-1}X') = n - k.$$

Therefore, we have the following result:

$$\frac{e'e}{\sigma^2} = \frac{(n-k)s^2}{\sigma^2} \sim \chi^2(n-k),$$

where

$$s^2 = \frac{1}{n-k}e'e.$$

5. We show that $\hat{\beta}$ is independent of e.

Proof:

Because $u \sim N(0, \sigma^2 I_n)$, we show that $Cov(e, \hat{\beta}) = 0$.

$$\begin{split} &\operatorname{Cov}(e,\hat{\beta}) = \operatorname{E}(e(\hat{\beta}-\beta)') = \operatorname{E}\Big((I_n - X(X'X)^{-1}X')u((X'X)^{-1}X'u)'\Big) \\ &= \operatorname{E}\Big((I_n - X(X'X)^{-1}X')uu'X(X'X)^{-1}\Big) = (I_n - X(X'X)^{-1}X')\operatorname{E}(uu')X(X'X)^{-1} \\ &= (I_n - X(X'X)^{-1}X')(\sigma^2I_n)X(X'X)^{-1} = \sigma^2(I_n - X(X'X)^{-1}X')X(X'X)^{-1} \\ &= \sigma^2(X(X'X)^{-1} - X(X'X)^{-1}X'X(X'X)^{-1}) = \sigma^2(X(X'X)^{-1} - X(X'X)^{-1}) = 0. \end{split}$$

 $\hat{\beta}$ is independent of e, because of normality assumption on u

[Review]

- Suppose that X is independent of Y. Then, Cov(X, Y) = 0. However, Cov(X, Y) = 0 does not mean in general that X is independent of Y.
- In the case where X and Y are normal, Cov(X, Y) = 0 indicates that X is independent of Y.

[End of Review]

[Review] Formulas — F Distribution:

- $\frac{U/n}{V/m} \sim F(n,m)$ when U $sim\chi^2(n)$, $V \sim \chi^2(m)$, and U is independent of V.
- When $X \sim N(0, I_n)$, A and B are $n \times n$ symmetric idempotent matrices, $\operatorname{Rank}(A) = \operatorname{tr}(A) = G$, $\operatorname{Rank}(B) = \operatorname{tr}(B) = K$ and AB = 0, then $\frac{X'AX/G}{X'BX/K} \sim F(G, K)$.

Note that the covariance of AX and BX is zero, which implies that AX is independent of BX under normality of X.

[End of Review]

6. Therefore, we obtain the following distribution:

$$\frac{(\hat{\beta} - \beta)'X'X(\hat{\beta} - \beta)}{\sigma^2} = \frac{u'X(X'X)^{-1}X'u}{\sigma^2} \sim \chi^2(k),$$
$$\frac{e'e}{\sigma^2} = \frac{u'(I_n - X(X'X)^{-1}X')u}{\sigma^2} \sim \chi^2(n - k)$$

 $\hat{\beta}$ is independent of e, because $X(X'X)^{-1}X'(I_n - X(X'X)^{-1}X') = 0$.

Accordingly, we can derive:

$$\frac{\frac{(\hat{\beta} - \beta)'X'X(\hat{\beta} - \beta)}{\sigma^2} / k}{\frac{e'e}{\sigma^2} / (n - k)} = \frac{(\hat{\beta} - \beta)'X'X(\hat{\beta} - \beta) / k}{s^2} \sim F(k, n - k)$$

Under the null hypothesis $H_0: \beta = 0, \frac{\hat{\beta}' X' X \hat{\beta}/k}{s^2} \sim F(k, n - k).$

Given data, $\frac{\hat{\beta}'X'X\hat{\beta}/k}{s^2}$ is compared with F(k, n-k).

If $\frac{\hat{\beta}' X' X \hat{\beta}/k}{c^2}$ is in the tail of the *F* distribution, the null hypothesis is rejected.

Coefficient of Determination (決定係数), R²:

1. Definition of the Coefficient of Determination,
$$R^2$$
: $R^2 = 1 - \frac{\sum_{i=1}^n e_i^2}{\sum_{i=1}^n (y_i - \overline{y})^2}$

2. Numerator:
$$\sum_{i=1}^{n} e_i^2 = e'e$$

3. Denominator:
$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = y'(I_n - \frac{1}{n}ii')'(I_n - \frac{1}{n}ii')y = y'(I_n - \frac{1}{n}ii')y$$

(*) Remark

$$\begin{pmatrix} y_1 - \overline{y} \\ y_2 - \overline{y} \\ \vdots \\ y_n - \overline{y} \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} - \begin{pmatrix} \overline{y} \\ \overline{y} \\ \vdots \\ \overline{y} \end{pmatrix} = y - \frac{1}{n}ii'y = (I_n - \frac{1}{n}ii')y,$$

where $i = (1, 1, \dots, 1)'$.

4. In a matrix form, we can rewrite as: $R^2 = 1 - \frac{e'e}{y'(I_n - \frac{1}{n}ii')y}$

F Distribution and Coefficient of Determination:

 \implies This will be discussed later.

Testing Linear Restrictions (F Distribution):

1. If $u \sim N(0, \sigma^2 I_n)$, then $\hat{\beta} \sim N(\beta, \sigma^2 (X'X)^{-1})$.

Consider testing the hypothesis $H_0: R\beta = r$.

$$R: G \times k$$
, $\operatorname{rank}(R) = G \le k$.

$$R\hat{\beta} \sim N(R\beta, \sigma^2 R(X'X)^{-1}R').$$

Therefore,
$$\frac{(R\hat{\beta}-r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta}-r)}{\sigma^2} \sim \chi^2(G).$$

Note that $R\beta = r$.

(a) When $\hat{\beta} \sim N(\beta, \sigma^2(X'X)^{-1})$, the mean of $R\hat{\beta}$ is:

$$E(R\hat{\beta}) = RE(\hat{\beta}) = R\beta.$$

(b) When $\hat{\beta} \sim N(\beta, \sigma^2(X'X)^{-1})$, the variance of $R\hat{\beta}$ is:

$$V(R\hat{\beta}) = E((R\hat{\beta} - R\beta)(R\hat{\beta} - R\beta)') = E(R(\hat{\beta} - \beta)(\hat{\beta} - \beta)'R')$$
$$= RE((\hat{\beta} - \beta)(\hat{\beta} - \beta)')R' = RV(\hat{\beta})R' = \sigma^2 R(X'X)^{-1}R'.$$

2. We know that
$$\frac{(n-k)s^2}{\sigma^2} = \frac{e'e}{\sigma^2} = \frac{(y-X\hat{\beta})'(y-X\hat{\beta})}{\sigma^2} \sim \chi^2(n-k).$$

- 3. Under normality assumption on $u, \hat{\beta}$ is independent of e.
- 4. Therefore, we have the following distribution:

$$\frac{(R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)/G}{(y - X\hat{\beta})'(y - X\hat{\beta})/(n - k)} \sim F(G, n - k)$$

5. Some Examples:

(a) t Test:

The case of G=1, r=0 and $R=(0,\cdots,1,\cdots,0)$ (the *i*th element of R is one and the other elements are zero):

The test of H_0 : $\beta_i = 0$ is given by:

$$\frac{(R\hat{\beta}-r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta}-r)/G}{s^2} = \frac{\hat{\beta}_i^2}{s^2a_{ii}} \sim F(1,n-k),$$

where $s^2 = e'e/(n-k)$, $R\hat{\beta} = \hat{\beta}_i$ and $a_{ii} = R(X'X)^{-1}R' = \text{the } i \text{ row and } i\text{th column of } (X'X)^{-1}$.

*) Recall that $Y \sim F(1, m)$ when $X \sim t(m)$ and $Y = X^2$.

Therefore, the test of H_0 : $\beta_i = 0$ is given by:

$$\frac{\hat{\beta}_i}{s\sqrt{a_{ii}}} \sim t(n-k).$$

(b) Test of structural change (Part 1):

$$y_i = \begin{cases} x_i \beta_1 + u_i, & i = 1, 2, \dots, m \\ x_i \beta_2 + u_i, & i = m + 1, m + 2, \dots, n \end{cases}$$

Assume that $u_i \sim N(0, \sigma^2)$.

In a matrix form,

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \\ y_{m+1} \\ y_{m+2} \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 & 0 \\ x_2 & 0 \\ \vdots & \vdots \\ x_m & 0 \\ 0 & x_{m+1} \\ 0 & x_{m+2} \\ \vdots & \vdots \\ 0 & x_n \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \\ u_{m+1} \\ u_{m+2} \\ \vdots \\ u_n \end{pmatrix}$$

Moreover, rewriting,

$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} X_1 & 0 \\ 0 & X_2 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + u$$

Again, rewriting,

$$Y = X\beta + u$$

The null hypothesis is $H_0: \beta_1 = \beta_2$.

Apply the F test, using $R = (I_k - I_k)$ and r = 0.

In this case, $G = \operatorname{rank}(R) = k$ and β is a $2k \times 1$ vector.

The distribution is F(k, n-2k).

(c) The hypothesis in which sum of the 1st and 2nd coefficients is equal to one:

$$R = (1, 1, 0, \dots, 0), r = 1$$

In this case, $G = \operatorname{rank}(R) = 1$

The distribution of the test statistic is F(1, n - k).

(d) Testing seasonality:

In the case of quarterly data (四半期データ), the regression model is:

$$y = \alpha + \alpha_1 D_1 + \alpha_2 D_2 + \alpha_3 D_3 + X \beta_0 + u$$

 $D_j = 1$ in the *j*th quarter and 0 otherwise, i.e., D_j , j = 1, 2, 3, are seasonal dummy variables.

Testing seasonality $\Longrightarrow H_0: \alpha_1 = \alpha_2 = \alpha_3 = 0$

$$\beta = \begin{pmatrix} \alpha \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \beta_0 \end{pmatrix}, \qquad R = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & 0 & \cdots & 0 \end{pmatrix}, \qquad r = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

In this case, $G = \operatorname{rank}(R) = 3$, and β is a $k \times 1$ vector.

The distribution of the test statistic is F(3, n - k).

(e) Cobb-Douglas Production Function:

Let Q_i , K_i and L_i be production, capital stock and labor.

We estimate the following production function:

$$\log(Q_i) = \beta_1 + \beta_2 \log(K_i) + \beta_3 \log(L_i) + u_i.$$

We test a linear homogeneous (一次同次) production function.

The null and alternative hypotheses are:

$$H_0: \beta_2 + \beta_3 = 1,$$

 $H_1: \beta_2 + \beta_3 \neq 1.$

Then, set as follows:

$$R = (0 \ 1 \ 1), \qquad r = 1.$$

(f) Test of structural change (Part 2):

Test the structural change between time periods m and m + 1.

In the case where both the constant term and the slope are changed, the regression model is as follows:

$$y_i = \alpha + \beta x_i + \gamma d_i + \delta d_i x_i + u_i,$$

where

$$d_i = \begin{cases} 0, & \text{for } i = 1, 2, \dots, m, \\ 1, & \text{for } i = m + 1, m + 2, \dots, n. \end{cases}$$

We consider testing the structural change at time m + 1.

The null and alternative hypotheses are as follows:

$$H_0: \gamma = \delta = 0,$$

$$H_1: \gamma \neq 0$$
, or, $\delta \neq 0$.

Then, set as follows:

$$R = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad r = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

(g) Multiple regression model:

Consider the case of two explanatory variables:

$$y_i = \alpha + \beta x_i + \gamma z_i + u_i.$$

We want to test the hypothesis that neither x_i nor z_i depends on y_i . In this case, the null and alternative hypotheses are as follows:

$$H_0: \beta = \gamma = 0,$$

$$H_1: \beta \neq 0$$
, or, $\gamma \neq 0$.

Then, set as follows:

$$R = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad r = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Coefficient of Determination R^2 and F distribution:

• The regression model:

$$y_i = x_i \beta + u_i = \beta_1 + x_{2i} \beta_2 + u_i$$

where

$$x_i = (1 \quad x_{2i}), \qquad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix},$$

$$x_i: 1 \times k$$
, $x_{2i}: 1 \times (k-1)$, $\beta: k \times 1$, $\beta_2: (k-1) \times 1$

Define:

$$X_2 = \begin{pmatrix} x_{21} \\ x_{22} \\ \vdots \\ x_{2n} \end{pmatrix}$$

Then,

$$y = X\beta + u = (i \quad X_2) \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + u = i\beta_1 + X_2\beta_2 + u,$$

where the first column of X corresponds to a constant term, i.e.,

$$X = (i \quad X_2), \qquad i = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

• Consider testing H_0 : $\beta_2 = 0$.

The *F* distribution is set as follows:

$$R = (0 I_{k-1}), r = 0$$

where R is a $(k-1) \times k$ matrix and r is a $(k-1) \times 1$ vector.

$$\frac{(R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)/(k-1)}{e'e/(n-k)} \sim F(k-1, n-k)$$

We are going to show:

$$(R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r) = \hat{\beta}_2'X_2'MX_2\hat{\beta}_2,$$

where
$$M = I_n - \frac{1}{n}ii'$$
.

Note that M is symmetric and idempotent, i.e., M'M = M.

$$\begin{pmatrix} y_1 - \overline{y} \\ y_2 - \overline{y} \\ \vdots \\ y_n - \overline{y} \end{pmatrix} = My$$

 $R(X'X)^{-1}R'$ is given by:

$$R(X'X)^{-1}R' = (0 I_{k-1}) \left(\begin{pmatrix} i' \\ X'_2 \end{pmatrix} (i X_2) \right)^{-1} \begin{pmatrix} 0 \\ I_{k-1} \end{pmatrix}$$
$$= (0 I_{k-1}) \left(\begin{matrix} i'i & i'X_2 \\ X'_2i & X'_2X_2 \end{matrix} \right)^{-1} \left(\begin{matrix} 0 \\ I_{k-1} \end{matrix} \right)$$

[Review] The inverse of a partitioned matrix:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix},$$

where A_{11} and A_{22} are square nonsingular matrices.

$$A^{-1} = \begin{pmatrix} B_{11} & -B_{11}A_{12}A_{22}^{-1} \\ -A_{22}^{-1}A_{21}B_{11} & A_{22}^{-1} + A_{22}^{-1}A_{21}B_{11}A_{12}A_{22}^{-1} \end{pmatrix},$$

where $B_{11} = (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1}$, or alternatively,

$$A^{-1} = \begin{pmatrix} A_{11}^{-1} + A_{11}^{-1} A_{12} B_{22} A_{21} A_{11}^{-1} & -A_{11}^{-1} A_{12} B_{22} \\ -B_{22} A_{21} A_{11}^{-1} & B_{22} \end{pmatrix},$$

where $B_{22} = (A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1}$.

[End of Review]

Go back to the F distribution.

$$\begin{pmatrix} i'i & i'X_2 \\ X_2'i & X_2'X_2 \end{pmatrix}^{-1} = \begin{pmatrix} \cdot & \cdots \\ \vdots & (X_2'X_2 - X_2'i(i'i)^{-1}i'X_2)^{-1} \end{pmatrix}$$
$$= \begin{pmatrix} \cdot & \cdots \\ \vdots & (X_2'(I_n - \frac{1}{n}ii')X_2)^{-1} \end{pmatrix} = \begin{pmatrix} \cdot & \cdots \\ \vdots & (X_2'MX_2)^{-1} \end{pmatrix}$$

Therefore, we obtain:

$$(0 I_{k-1}) \begin{pmatrix} i'i & i'X_2 \\ X_2'i & X_2'X_2 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ I_{k-1} \end{pmatrix}$$
$$= (0 I_{k-1}) \begin{pmatrix} \cdot & \cdots \\ \vdots & (X_2'MX_2)^{-1} \end{pmatrix} \begin{pmatrix} 0 \\ I_{k-1} \end{pmatrix} = (X_2'MX_2)^{-1}.$$

Thus, under H_0 : $\beta_2 = 0$, we obtain the following result:

$$\frac{(R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)/(k-1)}{e'e/(n-k)} = \frac{\hat{\beta}_2'X_2'MX_2\hat{\beta}_2/(k-1)}{e'e/(n-k)} \sim F(k-1, n-k).$$

lacktriangle Coefficient of Determination R^2 :

Define e as $e = y - X\hat{\beta}$. The coefficient of determinant, R^2 , is

$$R^2 = 1 - \frac{e'e}{y'My},$$

where $M = I_n - \frac{1}{n}ii'$, I_n is a $n \times n$ identity matrix and i is a $n \times 1$ vector consisting of 1, i.e., $i = (1, 1, \dots, 1)'$.

$$Me = My - MX\hat{\beta}.$$

When
$$X = (i \quad X_2)$$
 and $\hat{\beta} = \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix}$,

$$Me = e$$
,

because i'e = 0, and

$$MX = M(i \quad X_2) = (Mi \quad MX_2) = (0 \quad MX_2),$$

because Mi = 0.

$$MX\hat{\beta} = (0 \quad MX_2) \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix} = MX_2\hat{\beta}_2.$$

Thus,

$$My = MX\hat{\beta} + Me$$
 \Longrightarrow $My = MX_2\hat{\beta}_2 + e$.

y'My is given by: $y'My = \hat{\beta}_2'X_2'MX_2\hat{\beta}_2 + e'e$, because $X_2'e = 0$ and Me = e.

The coefficient of determinant, R^2 , is rewritten as:

$$R^2 = 1 - \frac{e'e}{y'My} \qquad \Longrightarrow \qquad e'e = (1 - R^2)y'My,$$

$$R^{2} = \frac{y'My - e'e}{y'My} = \frac{\hat{\beta}_{2}'X_{2}'MX_{2}\hat{\beta}_{2}}{y'My} \Longrightarrow \hat{\beta}_{2}'X_{2}'MX_{2}\hat{\beta}_{2} = R^{2}y'My.$$

Therefore,

$$\frac{\hat{\beta}_2' X_2' M X_2 \hat{\beta}_2 / (k-1)}{e'e/(n-k)} = \frac{R^2 y' M y / (k-1)}{(1-R^2) y' M y / (n-k)} = \frac{R^2 / (k-1)}{(1-R^2) / (n-k)} \sim F(k-1, n-k).$$

Thus, using R^2 , the null hypothesis H_0 : $\beta_2 = 0$ is easily tested.