
4 Generalized Least Squares Method (GLS,一般化最小自乗法)
1. Regression model: y = Xβ + u, u ∼ N(0, σ2Ω)

2. Heteroscedasticity (不等分散，不均一分散)
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First-Order Autocorrelation (一階の自己相関，系列相関)

In the case of time series data, the subscript is conventionally given by t, not i .

ut = ρut−1 + ϵt, ϵt ∼ iid N(0, σ2
ϵ )
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V(ut) = σ2 =
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3. The Generalized Least Squares (GLS，一般化最小二乗法) estimator of β, denoted by b,
solves the following minimization problem:

min
b

(y − Xb)′Ω−1(y − Xb)
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The GLSE of β is:

b = (X′Ω−1X)−1X′Ω−1y

4. In general, when Ω is symmetric, Ω is decomposed as follows.

Ω = A′ΛA

Λ is a diagonal matrix, where the diagonal elements of Λ are given by the eigen values.

A is a matrix consisting of eigen vectors.

When Ω is a positive definite matrix, all the diagonal elements of Λ are positive.

5. There exists P such that Ω = PP′ (i.e., take P = A′Λ1/2). =⇒ P−1ΩP′−1 = In

Multiply P−1 on both sides of y = Xβ + u.

We have:

y⋆ = X⋆β + u⋆,
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where y⋆ = P−1y, X⋆ = P−1X, and u⋆ = P−1u.

The variance of u⋆ is:

V(u⋆) = V(P−1u) = P−1V(u)P′−1 = σ2P−1ΩP′−1 = σ2In.

because Ω = PP′, i.e., P−1ΩP′−1 = In.

Accordingly, the regression model is rewritten as:

y⋆ = X⋆β + u⋆, u⋆ ∼ (0, σ2In)

Apply OLS to the above model.

Let b be as estimator of β from the above model.

That is, the minimization problem is given by:

min
b

(y⋆ − X⋆b)′(y⋆ − X⋆b),
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which is equivalent to:

min
b

(y − Xb)′Ω−1(y − Xb).

Solving the minimization problem above, we have the following estimator:

b = (X⋆′X⋆)−1X⋆′y⋆

= (X′Ω−1X)−1X′Ω−1y,

which is called GLS (Generalized Least Squares) estimator.

b is rewritten as follows:

b = β + (X⋆′X⋆)−1X⋆′u⋆ = β + (X′Ω−1X)−1X′Ω−1u

The mean and variance of b are given by:

E(b) = β,

V(b) = σ2(X⋆′X⋆)−1 = σ2(X′Ω−1X)−1.

54



6. Suppose that the regression model is given by:

y = Xβ + u, u ∼ N(0, σ2Ω).

In this case, when we use OLS, what happens?

β̂ = (X′X)−1X′y = β + (X′X)−1X′u

V(β̂) = σ2(X′X)−1X′ΩX(X′X)−1

Compare GLS and OLS.

(a) Expectation:

E(β̂) = β, and E(b) = β

Thus, both β̂ and b are unbiased estimator.
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(b) Variance:

V(β̂) = σ2(X′X)−1X′ΩX(X′X)−1

V(b) = σ2(X′Ω−1X)−1

Which is more efficient, OLS or GLS?.
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V(β̂) − V(b) = σ2(X′X)−1X′ΩX(X′X)−1 − σ2(X′Ω−1X)−1

= σ2
(
(X′X)−1X′ − (X′Ω−1X)−1X′Ω−1

)
Ω

×
(
(X′X)−1X′ − (X′Ω−1X)−1X′Ω−1

)′
= σ2AΩA′

Note that A is k × n and Ω is n × n.

Ω is the variance-covariance matrix of u, which is a positive definite matrix.

Therefore, except for Ω = In, AΩA′ is also a positive definite matrix.

(From Ω = PP′ and AΩA′ = AP(AP)′, we have xAP(xAP)′ =
∑k

i=1 z2
i > 0 for x , 0,

where x is 1 × k, z = xAP is 1 × k and z = (z1, z2, · · · , zk).)

This implies that V(β̂i) − V(bi) > 0 for the ith element of β.

Accordingly, b is more efficient than β̂.

7. If u ∼ N(0, σ2Ω), then b ∼ N(β, σ2(X′Ω−1X)−1).
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