1 Maximum Likelihood Estimation (MLE, EiE) —
Review

1. We have random variables X;, X, - - -, X,,, which are assumed to be mutually

independently and identically distributed.

2. The distribution function of {X;}?, is f(x;6), where x = (x;,x2,---,x,) and
0=(u,2).
Note that X is a vector of random variables and x is a vector of their realizations

(i.e., observed data).

Likelihood function L(-) is defined as L(6; x) = f(x;0).

Note that f(x;0) = [], f(x;;0) when X;, X5, -+, X,, are mutually indepen-



dently and identically distributed.

The maximum likelihood estimator (MLE) of 6 is 8 such that:

max L(6; X). = max log L(6; X).
0 0

MLE satisfies the following two conditions:
dlog L(6; X)

0.
(@) 50
0% log L(0; X
(b) % is a negative definite matrix.

. Fisher’s information matrix (7 1 & ¥ —D1E#R1TFY) is defined as:

0% log L(6; X))

1(6) = -E
© ( 06000’
where we have the following equality:

0% log L(6; X) _ (0log L(0; X) dlog L(6; X)\ _.,0log L(6; X)
—E( 9000 )=E( 90 o0 )= V( 90 )
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Proof of the above equality:

f L(9; x)dx =1

Take a derivative with respect to 6.

OL(o:
f ©: 040
00

(We assume that (i) the domain of x does not depend on 6 and (ii) the derivative
0L(0; x)
00

Rewriting the above equation, we obtain:

f 0log L(6; x)
00

exists.)

L(6; x)dx = 0,

1.e.,
E(alog L(6; X)) _o.
00
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Again, differentiating the above with respect to 6, we obtain:

& logL(#;x) dlog L(6; x) OL(6; x)
f 2008 L(6; x)dx + f 50 50 dx

0% log L(6; x) 0log L(6; x) 8 log L(6; x)
= — = 16
f a0y LO-Ddx+ f 80 00
0% log L(6; X) dlog L(6; X) dlog L(6; X)
_E E
(e )+ E 2 PY%

L(6; x)dx

)=0.

Therefore, we can derive the following equality:

. 0% log L(6; X) _E dlog L(6; X) 0log L(6; X) _v dlog L(6; X)
0606’ B 00 o0 B 90 ’

dlog L(0; X))
—1=0.
a6

where the second equality utilizes E(

10



4. Cramer-Rao Lower Bound (7 5 X—IJL « SADTFMR): (1(0))!
Suppose that an unbiased estimator of 6 is given by s(X).

Then, we have the following:
V(s(X)) > (1)

Proof:

The expectation of s(X) is:

E(s(X)) = f s(x)L(6; x)dx.

Differentiating the above with respect to 6,

OE(s(X)) _ oLO;x) , dlog L(6;x)
o0 f S5 dx = f S

_ Cov (S(X), W)

06
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For simplicity, let s(X) and 6 be scalars.

Then,
IE(s(X)\ dlog L6; X)\\ dlog L(6; X)
(T) = (COV(S(X), T)) =p V(s(X))V(T)
<V V (W)

) ) dlog L(6;X) .
where p denotes the correlation coefficient between s(X) and w, ie

86
oo 221030
p =
W\/ alogL(e X))

Note that |o| < 1.
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Therefore, we have the following inequality:

1.e.,

SE(s(X))\’ dlog L(6; X)
(T) < V(s(X)) V(T) ,
(6E<s<X>>)2
V(s(X)) >

- (8 log L(6; X))
00

Especially, when E(s(X)) = 6,

1 _ -1
V(s(X)) > - ( T X)) = (1)
06>

Even in the case where s(X) is a vector, the following inequality holds.

V(s(X)) = I@6) ™",
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where 1(0) is defined as:

0% log L(6; X)
16)= _E( 9000’ )
_E 0log L(6; X) 0log L(6; X) _v dlog L(6; X)
- 90 0’ - 90 '

The variance of any unbiased estimator of 6 is larger than or equal to (1(6))~".
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5. Asymptotic Normality of MLE:

Let 8 be MLE of 6.

As n goes to infinity, we have the following result:

-1
Vné -6 — N[O, 1im(@) ]

n—oo n

10
where it is assumed that lim (2) converges.

n—oo n

That is, when 7 is large, 6 is approximately distributed as follows:
§~N(o.ae) ™).

Suppose that s(X) = 6.

When n is large, V(s(X)) is approximately equal to (/ (9))_1.
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Practically, we utilize the following approximated distribution:
§~N(0.a@n™).
Then, we can obtain the significance test and the confidence interval for 6

. Central Limit Theorem: Let X;, X, -+, X, be mutually independently dis-
tributed random variables with mean E(X;) = u and variance V(X;) = 0> < o0

fori=1,2,---,n.
Define X = (1/n) Y2, X;.
Then, the central limit theorem is given by:

X-EX) X-pu

W@ o/

Note that E(X) = p and V(X) = o%/n.

— N(,1).
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That is,

_ 1 <&
VaX —p) = —= ) (Xi=p) — N©O.0%).
i=1

\n 4
Note that E(X) = u and nV(X) = 2.

In the case where X; is a vector of random variable with mean u and variance

Y < oo, the central limit theorem is given by:
_ 1 <&
VX =) = —= > (X;— i) — N(0,3).
Vi

Note that E(X) = u and nV(X) = .
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7. Central Limit Theorem II: Let X;, X5, ---, X,, be mutually independently
distributed random variables with mean E(X;) = u and variance V(X;) = 0'? for

i=1,2,---,n.

Assume:

Define X = (1/n) Y1, X;.

Then, the central limit theorem is given by:

X-EX) X-pu

\/\%_0/\/5

1 n

— X, — — N(0,0?).
7 Z]( ) (0,0%)
Note that E(X) = p and nV(X) — o2

— N, D),

1.e.,

V(X — p) =
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In the case where X; is a vector of random variable with mean u and variance

%, the central limit theorem is given by:

_ 1 <&
V(X —p) = 7 ;(Xi —p) — NQ©,3),

n

1
where ¥ = lim — 3 < oo,
n—oo n

i=1
Note that E(X) = p and nV(X) — 2.

[Review of Asymptotic Theories]

e Convergence in Probability (FEZIYER) X, — a, i.e., X converges in

probability to a, where a is a fixed number.
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¢ Convergence in Distribution (53 %UX3R) X, — X, i.e., X converges in
distribution to X. The distribution of X,, converges to the distribution of X as n

goes to infinity.

Some Formulas
X, and Y, : Convergence in Probability

Z, . Convergence in Distribution

o If X, — a,then f(X,) — f(a).
e IfX, — aandY, — b,then f(X,Y,) — f(ab).

e IfX, — aandZ, — Z, then X,,Z, — aZ,i.e., aZ is distributed with

mean E(aZ) = aE(Z) and variance V(aZ) = a*V(2).
[End of Review]
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8. Weak Law of Large Numbers (*ﬁ@ﬁﬁfﬁﬂ']) — Review:

Suppose that X;, X, - - -, X, are distributed.

Asn — o0, X —> lim E(X) under lim nV(X) < co, which is called the

n—oo

weak law of large numbers.
— Convergence in probability
— Proved by Chebyshev’s inequality
(1) Suppose that X;, X5, ---, X, are assumed to be mutually independently
and identically distributed with E(X;) = u and V(X;) = 02 < 0.
R
C ider X = — X,‘.
onsider " ;
Then, X —> pasn — oo,
Note that E(X) = u and nV(X) = 2.
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(i) Suppoose that X;, X;, -- -, X,, are assumed to be mutually independently
distributed with E(X;) = y; and V(X;) = o72.
Assume that

_ 1 <& _
(a) E(X) = - E u; — u,i.e., lim E(X) = u, and
n P n—o0

_ 1 & _
(b) nV(X) = — Z 02 — 0% < o0, ie., limnV(X) = 0% < .
n n—oo

i=1

Then,f —> pasn — o9,

Note that E(X) = Z‘ prand nV(X) = ~ ; o,
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(iii) Suppose that X, X,, ---, X,, are assumed to be serially correlated with
E(X;) = y; and Cov(X;, X;) = 07;.
Assume that
(a) EX) = %Z pi — poie., lim E(X) = u, and

i=1
n

_ 1 1 _
(b) nV(X) = — E E oij — o? < 0, ie., lim nV(X) = 0% < oo,
n n—oo
i=1 j=1

Then, X —> pasn — oo,

_ 1 n _ 1 n n
Note that E(X) = — i dnV(X) = - ije
ote that E(X) nz,uann() nZZO'J

i=1 i=1 j=1
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0.

10.

Some Formulas of Expectaion and Variance in Multivariate Cases

— Review:
A vector of randam variavle X: E(X) =uand VIX) = E(X — )X -w)) =X

Then, E(AX) = Ay and V(AX) = AZA’.

Proof:
E(AX) = AE(X) = Au
V(AX) = E(AX - A)(AX — Ap)') = E(A(X — 1)(AX — ))’)
= E(AX - )X —p)'A”) = AE((X — i)(X — ))A" = AV(X)A" = AXA’
Asymptotic Normality of MLE — Proof:
The density (or probability) function of X; is given by f(x;; 6).
The likelihood function is: L(6; x) = f(x;6) = [, f(x:;0),
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where x = (x1, X2, -+, Xp).

MLE of @ results in the following maximization problem:

max log L(6; x).
0

A solution of the above problem is given by MLE of 6, denoted by 6.

That is, § is given by the  which satisfies the following equation:

dlog L(0; x) - dlog f(xi;60)
90 B Z 90 =0

i=1

ol i
Olog /(Xi; 6) is taken as
00

the ith random variable, i.e., X; in the Central Limit Theorem II.

Replacing x; by the underlying random variable X;,
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Consider applying Central Limit Theorem II as follows:

%Z w _E(% Z W) 19log L(6; X) _E(lalogL(Q;X))

i=1 i=1 _n 00 n 06
1 < dlog f(X;;6) \/ 1 dlog L(6; X)
B Wt = Y s V(-—==—""
VG 2 (12ee L)
Note that
— dlog f(Xi;0)  dlog L(6; X)
40 - il

i=1

In this case, we need the following expectation and variance:

n 4 o0 n 00
and
1 x dlog f(X;;6) oy 10logL(6;X)y 1
V(n Z 00 ) B V(n 00 ) B n21(0).
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dlog L(6; X)\ 0log L(6; X)
a0V (T
Thus, the asymptotic distribution of

lﬁlogL(H;X) 1 = dlog f(X;; 6)

Note that E( ) = 1(0).

n 00 n — 06
is given by:
1 < dlog f(X;; 6) 1 < dlog f(X;; 0)
Z o) g(= Z e
\/ﬁ[n lzll 00 (n ; 00 )
1 0log L(6; X) 1 0log L(6; X)
B \F( 96 E(n 00 ))
1 dlog L(6; X)
=— z
N7 50 — N(0,%)
where
1 0 dlog f(X;;0)y 1 < dlog f(Xi;0)\ 1 0log L(6; X)
nV(n ; 00 ) - nV(; 00 ) B nV( 06 )
= 11(49) — 2.
n
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That is,
1 dlog L(6; X)

NAL

where X = (X1, X5, -+, X,).

— N(0,2),

Now, replacing 6 by 6, consider the asymptotic distribution of

il dlog L(6; X)
N 96 ’

which is expanded around 6 = 6 as follows:

1 0logL(B;X) 1 dlogL(6;X) 1 8*logL(6:;X)

0= 6-90).
N N RN - T T
Therefore,
1 logL(6;X) - 1 dlog L(6; X)
TR g~ L8N N, 3).
N Y - ©0.2)
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The left-hand side is rewritten as:

L 0% log L(6; X)
N

1 8% log L(6; X)

(9_9):‘/';(;1 2606’ )(9_9)'

Then,

2 . -
Vi@ - ) ~ (~ TR L0 Y

L 0log L(6; X))
0006

N o0
—s N(,27'Ex7 Y = N,Z7).

Using the law of large number, note that

1 6% log L(6; X) 1 0% log L(6; X)
g0 snA) lim = [—p(L22 =% 4
n 9000 aben ( (~00 )
= lim 1 (V(M)) = lim 1[(9) =3,
n—oo N a n—oo 1
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11.

(l 9% log L(6; X))—l (L dlog L(6; X)
w0006 N
L 0log L(6; X))

N
Optimization (&3&1t):

) has the same asymptotic distribu-

tion as Z“(

MLE of 6 results in the following maximization problem:

max log L(6; x).
0

‘We often have the case where the solution of 8 is not derived in closed form.

— Optimization procedure

_ 0logL(;x)  dlog L(6"; x) . 9% log L(6*; x)

0 00 06 0600’

@ —6).

Solving the above equation with respect to 6, we obtain the following:

& log L(0";x)\ ' 8log L(6"; x)
0000’ 00 ’

ezm—(
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Replace the variables as follows:

0 — 9(i+1)’ 0* SN 6(!)
Then, we have:
D) — g0 0% log L(6Y; x) -l dlog L(6; x)
B d00Y 00 '

— Newton-Raphson method (Za—F> « STV ViE)

8> log L(6"; 8> log L(6";

0000’ 0000’
timization algorithm:

), we obtain the following op-

girh — g (E (62 log L(Q(i); x) ))—1 dlog L(Q(i); x)

06006’ 06
, o ().
_ 9([) + (1(9(1))) 1 (910g g(g@ ’ x)

— Method of Scoring (X J773%)
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