3 Panel Data

3.1 GLS — Review

Regression model I:

$$y = X\beta + u,$$
 $u \sim N(0, \sigma^2 I_n),$

where y, X, β , u, 0 and I_n are $n \times 1$, $n \times k$, $k \times 1$, $n \times 1$, and $n \times n$, respectively.

We solve the following minimization problem:

$$\min_{\beta} (y - X\beta)'(y - X\beta).$$

Let $\hat{\beta}$ be a solution of the above minimization problem.

OLS estimator of β is given by:

$$\hat{\beta} = (X'X)^{-1}X'y = \beta + (X'X)^{-1}X'u.$$

$$E(\hat{\beta}) = \beta, \qquad V(\hat{\beta}) = \sigma^2(X'X)^{-1}.$$

Regression model II:

$$y = X\beta + u,$$
 $u \sim N(0, \sigma^2 \Omega),$

where Ω is $n \times n$.

We solve the following minimization problem:

$$\min_{\beta} (y - X\beta)' \Omega^{-1} (y - X\beta).$$

Let *b* be a solution of the above minimization problem.

GLS estimator of β is given by:

$$b = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}y = \beta + (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}u.$$

$$E(b) = \beta, \qquad V(b) = \sigma^2(X'\Omega^{-1}X)^{-1}.$$

• We apply OLS to the following regression model:

$$y = X\beta + u,$$
 $u \sim N(0, \sigma^2 \Omega).$

OLS estimator of β is given by:

$$\begin{split} \hat{\beta} &= (X'X)^{-1}X'y = \beta + (X'X)^{-1}X'u. \\ \mathrm{E}(\hat{\beta}) &= \beta, \qquad \mathrm{V}(\hat{\beta}) = \sigma^2(X'X)^{-1}X'\Omega X(X'X)^{-1}. \end{split}$$

 $\hat{\beta}$ is an unbiased estimator.

The difference between two variances is:

$$\begin{split} & \mathrm{V}(\hat{\beta}) - \mathrm{V}(b) \\ &= \sigma^2 (X'X)^{-1} X' \Omega X (X'X)^{-1} - \sigma^2 (X'\Omega^{-1}X)^{-1} \\ &= \sigma^2 \Big((X'X)^{-1} X' - (X'\Omega^{-1}X)^{-1} X' \Omega^{-1} \Big) \Omega \Big((X'X)^{-1} X' - (X'\Omega^{-1}X)^{-1} X' \Omega^{-1} \Big)' \\ &= \sigma^2 A \Omega A' \end{split}$$

 Ω is the variance-covariance matrix of u, which is a positive definite matrix.

Therefore, except for $\Omega = I_n$, $A\Omega A'$ is also a positive definite matrix.

This implies that $V(\hat{\beta}_i) - V(b_i) > 0$ for the *i*th element of β .

Accordingly, b is more efficient than $\hat{\beta}$.

3.2 Panel Model Basic

Model:

$$y_{it} = X_{it}\beta + v_i + u_{it},$$
 $i = 1, 2, \dots, n,$ $t = 1, 2, \dots, T$

where i indicates individual and t denotes time.

There are n observations for each t.

 u_{it} indicates the error term, assuming that $E(u_{it}) = 0$, $V(u_{it}) = \sigma_u^2$ and $Cov(u_{it}, u_{js}) = 0$ for $i \neq j$ and $t \neq s$.

 v_i denotes the individual effect, which is fixed or random.

3.2.1 Fixed Effect Model (固定効果モデル)

In the case where v_i is fixed, the case of $v_i = z_i \alpha$ is included.

$$y_{it} = X_{it}\beta + v_i + u_{it}, \qquad i = 1, 2, \dots, n, \quad t = 1, 2, \dots, T,$$

$$\overline{y}_i = \overline{X}_i\beta + v_i + \overline{u}_i, \qquad i = 1, 2, \dots, n,$$
where
$$\overline{y}_i = \frac{1}{T} \sum_{t=1}^T y_{it}, \overline{X}_i = \frac{1}{T} \sum_{t=1}^T X_{it}, \text{ and } \overline{u}_i = \frac{1}{T} \sum_{t=1}^T u_{it}.$$

$$(y_{it} - \overline{y}_i) = (X_{it} - \overline{X}_i)\beta + (u_{it} - \overline{u}_i), \qquad i = 1, 2, \dots, n, \quad t = 1, 2, \dots, T,$$

Taking an example of y, the left-hand side of the above equation is rewritten as:

$$y_{it} - \overline{y}_i = y_{it} - \frac{1}{T} \mathbf{1}_T' y_i,$$

where
$$1_T = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$
, which is a $T \times 1$ vector, and $y_i = \begin{pmatrix} y_{i1} \\ y_{i2} \\ \vdots \\ y_{iT} \end{pmatrix}$.

$$\begin{pmatrix} y_{i1} - \overline{y}_{i} \\ y_{i2} - \overline{y}_{i} \\ \vdots \\ y_{iT} - \overline{y}_{i} \end{pmatrix} = I_{T}y_{i} - 1_{T}\overline{y}_{i} = I_{T}y_{i} - \frac{1}{T}1_{T}1'_{T}y_{i} = (I_{T} - \frac{1}{T}1_{T}1'_{T})y_{i}$$

Thus,

$$\begin{pmatrix} y_{i1} - y_i \\ y_{i2} - \overline{y}_i \\ \vdots \\ y_{iT} - \overline{y}_i \end{pmatrix} = \begin{pmatrix} X_{i1} - X_i \\ X_{i2} - \overline{X}_i \\ \vdots \\ X_{iT} - \overline{X}_i \end{pmatrix} \beta + \begin{pmatrix} u_{i1} - u_i \\ u_{i2} - \overline{u}_i \\ \vdots \\ u_{iT} - \overline{u}_i \end{pmatrix}, \qquad i = 1, 2, \dots, n,$$

which is re-written as:

$$(I_T - \frac{1}{T} \mathbf{1}_T \mathbf{1}_T') y_i = (I_T - \frac{1}{T} \mathbf{1}_T \mathbf{1}_T') X_i \beta + (I_T - \frac{1}{T} \mathbf{1}_T \mathbf{1}_T') u_i, \qquad i = 1, 2, \dots, n,$$

i.e.,

$$D_T y_i = D_T X_i \beta + D_T u_i, \qquad i = 1, 2, \dots, n,$$

where $D_T = (I_T - \frac{1}{T} \mathbf{1}_T \mathbf{1}_T')$, which is a $T \times T$ matrix.

Note that $D_T D_T' = D_T$, i.e., D_T is a symmetric and idempotent matrix.

Using the matrix form for $i = 1, 2, \dots, n$, we have:

$$\begin{pmatrix} D_T y_1 \\ D_T y_2 \\ \vdots \\ D_T y_n \end{pmatrix} = \begin{pmatrix} D_T X_1 \\ D_T X_2 \\ \vdots \\ D_T X_n \end{pmatrix} \beta + \begin{pmatrix} D_T u_1 \\ D_T u_2 \\ \vdots \\ D_T u_n \end{pmatrix},$$

i.e.,

$$\begin{pmatrix} D_T & 0 & \cdots & 0 \\ 0 & D_T & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D_T \end{pmatrix} y = \begin{pmatrix} D_T & 0 & \cdots & 0 \\ 0 & D_T & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D_T \end{pmatrix} X\beta + \begin{pmatrix} D_T & 0 & \cdots & 0 \\ 0 & D_T & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D_T \end{pmatrix} u,$$

where
$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
, $X \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}$, and $u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$, which are $Tn \times 1$, $Tn \times k$ and $Tn \times 1$ matrices,

respectively

Using the Kronecker product, we obtain the following expression:

$$(I_n \otimes D_T)y = (I_n \otimes D_T)X\beta + (I_n \otimes D_T)u,$$

where $(I_n \otimes D_T)$, y, X, and u are $nT \times nT$, $nT \times 1$, $nT \times k$, and $nT \times 1$, respectively.

Kronecker Product — Review:

1.
$$A: n \times m$$
, $B: T \times k$

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1m}B \\ a_{21}B & a_{22}B & \cdots & a_{2m}B \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nm}B \end{pmatrix}, \text{ which is a } nT \times mk \text{ matrix.}$$

2. A:
$$n \times n$$
, B: $m \times m$

$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}, \qquad |A \otimes B| = |A|^m |B|^n,$$

 $(A \otimes B)' = A' \otimes B', \qquad \operatorname{tr}(A \otimes B) = \operatorname{tr}(A)\operatorname{tr}(B).$

3. For A, B, C and D such that the products are defined,

$$(A \otimes B)(C \otimes D) = AC \otimes BD.$$

End of Review

Going back to the previous slide, using the Kronecker product, we obtain the following expression:

$$(I_n \otimes D_T)y = (I_n \otimes D_T)X\beta + (I_n \otimes D_T)u,$$

where $(I_n \otimes D_T)$, y, X, and u are $nT \times nT$, $nT \times 1$, $nT \times k$, and $nT \times 1$, respectively.

Apply OLS to the above regression model.

$$\hat{\beta} = \left(((I_n \otimes D_T)X)'(I_n \otimes D_T)X \right)^{-1} ((I_n \otimes D_T)X)'(I_n \otimes D_T)y$$

$$= \left(X'(I_n \otimes D_T'D_T)X \right)^{-1} X'(I_n \otimes D_T'D_T)y$$

$$= \left(X'(I_n \otimes D_T)X \right)^{-1} X'(I_n \otimes D_T)y.$$

Note that the inverse matrix of D_T is not available, because the rank of D_T is T-1, not T (full rank).

The rank of a symmetric and idempotent matrix is equal to its trace.

The fixed effect v_i is estimated as:

$$\hat{\mathbf{v}}_i = \overline{\mathbf{y}}_i - \overline{X}_i \hat{\boldsymbol{\beta}}.$$

Possibly, we can estimate the following regression:

$$\hat{v}_i = Z_i \alpha + \epsilon_i,$$

where it is assumed that the individual-specific effect depends on Z_i .

The estimator of σ_u^2 is given by:

$$\hat{\sigma}_{u}^{2} = \frac{1}{nT - k - n} \sum_{i=1}^{n} \sum_{t=1}^{T} (y_{it} - X_{it}\hat{\beta} - \hat{v}_{i})^{2}.$$

[Remark]

More than ten years ago, "fixed" indicates that v_i is nonstochastic.

Recently, however, "fixed" does not mean anything.

"fixed" indicates that OLS is applied and that v_i may be correlated with X_{it} .

Possibly, $E(v_i|X) = \alpha_i(X)$, where $\alpha_i(X)$ is a function of X_{it} for $i = 1, 2, \dots, n$ and $t = 1, 2, \dots, T$, and it is normalized to $\sum_{i=1}^{n} \alpha_i(X) = 0$.

3.2.2 Random Effect Model (ランダム効果モデル)

Model:

$$y_{it} = X_{it}\beta + v_i + u_{it}, \qquad i = 1, 2, \dots, n, \quad t = 1, 2, \dots, T$$

where *i* indicates individual and *t* denotes time.

The assumptions on the error terms v_i and u_{it} are:

$$E(v_i|X) = E(u_{it}|X) = 0 \text{ for all } i,$$

$$V(v_i|X) = \sigma_v^2 \text{ for all } i, \qquad V(u_{it}|X) = \sigma_u^2 \text{ for all } i \text{ and } t,$$

$$Cov(v_i, v_j|X) = 0 \text{ for } i \neq j, \qquad Cov(u_{it}, u_{js}|X) = 0 \text{ for } i \neq j \text{ and } t \neq s,$$

$$Cov(v_i, u_{it}|X) = 0 \text{ for all } i, j \text{ and } t.$$

Note that *X* includes X_{it} for $i = 1, 2, \dots, n$ and $t = 1, 2, \dots, T$.

In a matrix form with respect to $t = 1, 2, \dots, T$, we have the following:

$$y_i = X_i \beta + v_i 1_T + u_i, \qquad i = 1, 2, \dots, n,$$
where $y_i = \begin{pmatrix} y_{i1} \\ y_{i2} \\ \vdots \\ y_{iT} \end{pmatrix}, X_i = \begin{pmatrix} X_{i1} \\ X_{i2} \\ \vdots \\ X_{iT} \end{pmatrix} \text{ and } u_i = \begin{pmatrix} u_{i1} \\ u_{i2} \\ \vdots \\ u_{iT} \end{pmatrix} \text{ are } T \times 1, T \times k \text{ and } T \times 1, \text{ respectively.}$

 $u_i \sim N(0, \sigma_u^2 I_T)$ and $v_i 1_T \sim N(0, \sigma_v^2) \implies v_i 1_T + u_i \sim N(0, \sigma_v^2 1_T 1_T' + \sigma_u^2 I_T)$.

Again, in a matrix form with respect to *i*, we have the following:

where
$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
, $X = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}$, $v = \begin{pmatrix} v_1 1_T \\ v_2 1_T \\ \vdots \\ v_n 1_T \end{pmatrix}$ and $u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$ are $nT \times 1$, $nT \times k$, $nT \times 1$ and

 $nT \times 1$, respectively.

The distribution of u + v is given by:

$$v + u \sim N(0, I_n \otimes (\sigma_v^2 1_T 1_T' + \sigma_u^2 I_T))$$

The likelihood function is given by:

$$L(\beta, \sigma_{v}^{2}, \sigma_{u}^{2}) = (2\pi)^{-nT/2} \Big| I_{n} \otimes (\sigma_{v}^{2} 1_{T} 1_{T}' + \sigma_{u}^{2} I_{T}) \Big|^{-1/2}$$

$$\times \exp \Big(-\frac{1}{2} (y - X\beta)' \Big(I_{n} \otimes (\sigma_{v}^{2} 1_{T} 1_{T}' + \sigma_{u}^{2} I_{T}) \Big)^{-1} (y - X\beta) \Big).$$

Remember that $f(x) = (2\pi)^{-k/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right)$ when $X \sim N(\mu, \Sigma)$, where X denotes a k-variate random variable.

The estimators of β , σ_v^2 and σ_u^2 are given by maximizing the following log-likelihood function:

$$\begin{split} \log L(\beta,\sigma_v^2,\sigma_u^2) &= -\frac{nT}{2}\log(2\pi) - \frac{1}{2}\log\left|I_n\otimes(\sigma_v^21_T1_T' + \sigma_u^2I_T)\right| \\ &- \frac{1}{2}(y - X\beta)'\Big(I_n\otimes(\sigma_v^21_T1_T' + \sigma_u^2I_T)\Big)^{-1}(y - X\beta). \end{split}$$

MLE of β , denoted by $\tilde{\beta}$, is given by:

$$\tilde{\beta} = \left(X' \Big(I_n \otimes (\sigma_v^2 1_T 1_T' + \sigma_u^2 I_T) \Big)^{-1} X \Big)^{-1} X' \Big(I_n \otimes (\sigma_v^2 1_T 1_T' + \sigma_u^2 I_T) \Big)^{-1} y$$

$$= \Big(\sum_{i=1}^n X_i' (\sigma_v^2 1_T 1_T' + \sigma_u^2 I_T)^{-1} X_i \Big)^{-1} \Big(\sum_{i=1}^n X_i' (\sigma_v^2 1_T 1_T' + \sigma_u^2 I_T)^{-1} y_i \Big),$$

which is equivalent to GLS.

Note that $\tilde{\beta}$ is not operational, because $\hat{\beta}$ depends on σ_v^2 and σ_u^2 .

3.3 Hausman's Specification Error (特定化誤差) Test

Regression model:

$$y = X\beta + u$$
, $y : n \times 1$, $X : n \times k$, $\beta : k \times 1$, $u : n \times 1$.

Suppose that *X* is stochastic.

If
$$E(u|X) = 0$$
, OLSE $\hat{\beta}$ is unbiased because of $\hat{\beta} = (X'X)^{-1}X'y = \beta + (X'X)^{-1}X'u$ and $E((X'X)^{-1}X'u) = 0$.

However, If $E(u|X) \neq 0$, OLSE $\hat{\beta}$ is biased and inconsistent.

Therefore, we need to check if *X* is correlated with *u* or not.

⇒ Hausman's Specification Error Test

The null and alternative hypotheses are:

- H_0 : X and u are independent, i.e., Cov(X, u) = 0,
- H_1 : X and u are not independent.

Suppose that we have two estimators $\hat{\beta}_0$ and $\hat{\beta}_1$, which have the following properties:

- $\hat{\beta}_0$ is consistent and efficient under H_0 , but is not consistent under H_1 ,
- $\hat{\beta}_1$ is consistent under both H_0 and H_1 , but is not efficient under H_0 .

Under the conditions above, we have the following test statistic:

$$(\hat{\beta}_1 - \hat{\beta}_0)' \left(V(\hat{\beta}_1) - V(\hat{\beta}_0) \right)^{-1} (\hat{\beta}_1 - \hat{\beta}_0) \longrightarrow \chi^2(k).$$

Example: $\hat{\beta}_0$ is OLS, while $\hat{\beta}_1$ is IV such as 2SLS.

Hausman, J.A. (1978) "Specification Tests in Econometrics," *Econometrica*, Vol.46, No.6, pp.1251–1271.

3.4 Choice of Fixed Effect Model or Random Effect Model

3.4.1 The Case where X is Correlated with u — Review

The standard regression model is given by:

$$y = X\beta + u$$
, $u \sim N(0, \sigma^2 I_n)$

OLS is:

$$\hat{\beta} = (X'X)^{-1}X'y = \beta + (X'X)^{-1}X'u.$$

If *X* is not correlated with *u*, i.e., E(X'u) = 0, we have the result: $E(\hat{\beta}) = \beta$.

However, if *X* is correlated with *u*, i.e., $E(X'u) \neq 0$, we have the result: $E(\hat{\beta}) \neq \beta$. $\implies \hat{\beta}$ is biased.

Assume that in the limit we have the followings:

$$(\frac{1}{n}X'X)^{-1} \longrightarrow M_{xx}^{-1},$$

$$\frac{1}{n}X'u \longrightarrow M_{xu} \neq 0 \text{ when } X \text{ is correlated with } u.$$

Therefore, even in the limit,

$$\operatorname{plim} \hat{\beta} = \beta + M_{xx}^{-1} M_{xu} \neq \beta,$$

which implies that $\hat{\beta}$ is not a consistent estimator of β .

Thus, in the case where X is correlated with u, OLSE $\hat{\beta}$ is neither unbiased nor consistent.

3.4.2 Fixed Effect Model or Random Effect Model

Usually, in the random effect model, we can consider that v_i is correlated with X_{it} .

[Reason:]

 v_i includes the unobserved variables in the *i*th individual, i.e., ability, intelligence, and so on.

 X_{it} represents the observed variables in the *i*th individual, i.e., income, assets, and so on.

The unobserved variables v_i are related to the observed variables X_{it} .

Therefore, we consider that v_i is correlated with X_{it} .

Thus, in the case of the random effect model, usually we cannot use OLS or GLS.

In order to use the random effect model, we need to test whether v_i is uncorrelated with X_{it} .

Apply Hausman's test.

- H_0 : X_{it} and e_{it} are independent (\longrightarrow Use the random effect model),
- $H_1: X_{it}$ and e_{it} are not independent (\longrightarrow Use the fixed effect model),

where $e_{it} = v_i + u_{it}$.

Note that:

- We can use the random effect model under H_0 , but not under H_1 .
- We can use the fixed effect model under both H_0 and H_1 .
- The random effect model is more efficient than the fixed effect model under H_0 .

Therefore, under H_0 we should use the random effect model, rather than the fixed effect model.

3.5 Applications

Example of Panel Data in Section 3: Production Function of Prefectures from

2001 to 2010.

pref: 都道府県(通し番号 1~47)

year: 年度(2001~2010年)

y : 県内総生産(支出側、実質: 固定基準年方式), 出所: 県民経済計算(平成 13 年度 - 平成 24 年度)(93SNA, 平成 17 年基準計数)

k : 都道府県別民間資本ストック (平成 12 暦年価格, 年度末, 国民経済計 算ベース 平成 23 年 3 月時点) 一期前 (2000~2009 年)

1 : 県内就業者数, 出所: 県民経済計算(平成13年度 - 平成24年度)(93SNA, 平成17年基準計数)

. tsset pref year

panel variable: pref (strongly balanced)
time variable: year, 2001 to 2010

delta: 1 unit

. gen ly=log(y)

. gen lk=log(k)

. gen 11=log(1)

. reg ly lk ll

Source	SS	df	MS		Number of obs = 470 F(2, 467) = 19374.95
Model Residual	316.479302 3.81409572		239651 167229		Prob > F = 0.0000 R-squared = 0.9881 Adj R-squared = 0.9880
Total	320.293398	469 .682	928354		Root MSE = .09037
ly	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
lk 11 _cons	.0941587 .9976399 .5970719	.0081273 .0102641 .0773137	11.59 97.20 7.72	0.000 0.000 0.000	.0781881 .1101294 .9774703 1.017809 .4451461 .7489978

. xtreg ly lk ll,fe

```
Fixed-effects (within) regression
                                        Number of obs =
                                                               470
                                        Number of groups =
Group variable: pref
                                                              47
R-sq: within = 0.1721
                                        Obs per group: min = 10
                                                    avg = 10.0
     between = 0.9456
     overall = 0.9439
                                                              10
                                                    max =
                                        F(2,421)
                                                   = 43.77
= 0.0000
corr(u i. Xb) = 0.8803
                                        Prob > F
       ly | Coef. Std. Err. t P>|t| [95% Conf. Interval]
        lk | .2329208 .0252321 9.23 0.000 .1833242 .2825175
        11 | .3268537 .0810662 4.03 0.000 .1675088 .4861987
     cons | 7.691145 1.376677 5.59 0.000 4.985128 10.39716
    sigma_u | .41045507
    sigma_e | .03561437
       rho | .99252757
                       (fraction of variance due to u i)
F test that all u_i=0: F(46, 421) = 56.22 Prob > F = 0.0000
. est store fixed
```

. xtreg ly lk ll,re

Random-effects GLS regression Number of obs = 470 Group variable: pref Number of groups = 47

```
R-sq: within = 0.1058
                                                          Obs per group: min = 10
        between = 0.9805
                                                                            avg = 10.0
        overall = 0.9787
                                                                           max =
                                                                                          10
                                                         Wald chi2(2) = 3875.75
Prob > chi2 = 0.0000
corr(u_i, X) = 0  (assumed)
           ly | Coef. Std. Err. z P>|z| [95% Conf. Interval]

    1k |
    .2457767
    .0153094
    16.05
    0.000
    .2157708
    .2757827

    11 |
    .8105099
    .0220256
    36.80
    0.000
    .7673406
    .8536793

    ons |
    .8332015
    .2411141
    3.46
    0.001
    .3606265
    1.305776

        _cons |
      sigma_u | .081609
      sigma_e | .03561437
         rho | .8400205 (fraction of variance due to u_i)
. hausman fixed
                    ---- Coefficients ----
                                                   (b-B) sqrt(diag(V_b-V_B))
                     (b)
                       fixed
                                                      Difference
                   .2329208 .2457767
            lk I
                                                 -.0128559
                     .3268537
                                 .8105099
                                                     -.4836562
```

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic