8.4 Cointegration (共和分)

1. For a scalar y_t , when $\Delta y_t = y_t - y_{t-1}$ is a white noise (i.e., iid), we write $\Delta y_t \sim I(0)$ or $y_t \sim I(1)$. $Deltay_t = (1 - L)y_t, \quad \Delta^d y_t = (1 - L)^d y_t.$

I(0) indicates a stationary process.

 $\Delta^d y_t \sim I(0)$ indicates that y_t has d unit roots.

 $\Delta^d y_t \sim I(0)$ indicates $y_t \sim I(d)$.

2. Definition of Cointegration:

Suppose that each series in a $g \times 1$ vector y_t is I(1), i.e., each series has unit root, and that a linear combination of each series (i.e., $a'y_t$ for a nonzero vector a) is I(0), i.e., stationary.

Then, we say that y_t has a cointegration.

a is called the cointegrating vector.

3. Example:

Suppose that $y_t = (y_{1,t}, y_{2,t})'$ is the following vector autoregressive process:

$$y_{1,t} = \phi_1 y_{2,t} + \epsilon_{1,t},$$

$$y_{2,t} = y_{2,t-1} + \epsilon_{2,t}.$$

Then,

$$\Delta y_{1,t} = \phi_1 \epsilon_{2,t} + \epsilon_{1,t} - \epsilon_{1,t-1}, \quad (MA(1) \text{ process}),$$
$$\Delta y_{2,t} = \epsilon_{2,t},$$

where both $y_{1,t}$ and $y_{2,t}$ are I(1) processes.

The linear combination $y_{1,t} - \phi_1 y_{2,t}$ is I(0).

In this case, we say that $y_t = (y_{1,t}, y_{2,t})'$ is cointegrated with $a = (1, -\phi_1)$.

 $a = (1, -\phi_1)$ is called the cointegrating vector, which is not unique.

Therefore, the first element of *a* is set to be one.

8.5 Spurious Regression (見せかけ回帰)

1. Suppose that $y_t \sim I(1)$ and $x_t \sim I(1)$.

For the regression model $y_t = x_t\beta + u_t$, OLS does not work well if we do not have the β which satisfies $u_t \sim I(0)$.

⇒ Spurious regression (見せかけ回帰)

2. Suppose that $y_t \sim I(1)$, y_t is a $g \times 1$ vector and $y_t = \begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix}$. $y_{2,t}$ is a $k \times 1$ vector, where k = g - 1.

Consider the following regression model:

$$y_{1,t} = \alpha + \gamma' y_{2,t} + u_t, \qquad t = 1, 2, \cdots, T.$$

OLSE is given by:

$$\begin{pmatrix} \hat{\alpha} \\ \hat{\gamma} \end{pmatrix} = \begin{pmatrix} T & \sum y'_{2,t} \\ \sum y_{2,t} & \sum y_{2,t} y'_{2,t} \end{pmatrix}^{-1} \begin{pmatrix} \sum y_{1,t} \\ \sum y_{1,t} y_{2,t} \end{pmatrix}.$$

Next, consider testing the null hypothesis H_0 : $R\gamma = r$, where R is a $m \times k$ matrix ($m \le k$) and r is a $m \times 1$ vector.

The *F* statistic, denoted by F_T , is given by:

$$F_T = \frac{1}{m} (R\hat{\gamma} - r)' \left(s_T^2 \left(0 \quad R \right) \left(\begin{matrix} T & \sum y'_{2,t} \\ \sum y_{2,t} & \sum y_{2,t} y'_{2,t} \end{matrix} \right)^{-1} \begin{pmatrix} 0 \\ R' \end{pmatrix} \right)^{-1} (R\hat{\gamma} - r),$$

where

$$s_T^2 = \frac{1}{T-g} \sum_{t=1}^T (y_{1,t} - \hat{\alpha} - \hat{\gamma}' y_{2,t})^2.$$

When we have the γ such that $y_{1,t} - \gamma y_{2,t}$ is stationary, OLSE of γ , i.e., $\hat{\gamma}$, is not statistically equal to zero.

When the sample size T is large enough, H_0 is rejected by the F test.

Phillips, P.C.B. (1986) "Understanding Spurious Regressions in Econometrics," *Journal of Econometrics*, Vol.33, pp.95 – 131.

Consider a $g \times 1$ vector y_t whose first difference is described by:

$$\Delta y_t = \Psi(L)\epsilon_t = \sum_{s=0}^{\infty} \Psi_s \epsilon_{t-s},$$

for ϵ_t an i.i.d. $g \times 1$ vector with mean zero, variance $E(\epsilon_t \epsilon'_t) = PP'$, and finite fourth moments and where $\{s\Psi_s\}_{s=0}^{\infty}$ is absolutely summable.

Let k = g - 1 and $\Lambda = \Psi(1)P$. Partition y_t as $y_t = \begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix}$ and $\Lambda\Lambda'$ as $\Lambda\Lambda' = \begin{pmatrix} \Sigma_{11} & \Sigma'_{21} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$, where $y_{1,t}$ and Σ_{11} are scalars, $y_{2,t}$ and Σ_{21} are $k \times 1$ vectors, and Σ_{22} is a $k \times k$ matrix.

Suppose that $\Lambda\Lambda'$ is nonsingular, and define $\sigma_1^{*2} = \Sigma_{11} - \Sigma'_{21} \Sigma_{21}^{-1} \Sigma_{21}$.

Let L_{22} denote the Cholesky factor of Σ_{22}^{-1} , i.e., L_{22} is the lower triangular matrix satisfying $\Sigma_{22}^{-1} = L_{22}L'_{22}$.

Then, (a) - (c) hold.

(a) OLSEs of α and γ in the regression model $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$, denoted by $\hat{\alpha}_T$ and $\hat{\gamma}_T$, are characterized by:

where
$$\begin{pmatrix} T^{-1/2}\hat{\alpha}_T\\ \hat{\gamma}_T - \Sigma_{22}^{-1}\Sigma_{21} \end{pmatrix} \longrightarrow \begin{pmatrix} \sigma_1^*h_1\\ \sigma_1^*L_{22}h_2 \end{pmatrix},$$

 $\begin{pmatrix} h_1\\ h_2 \end{pmatrix} = \begin{pmatrix} 1 & \int_0^1 W_2^*(r)dr\\ \int_0^1 W_2^*(r)dr & \int_0^1 W_2^*(r)W_2^*(r)'dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr\\ \int_0^1 W_2^*(r)W_1^*(r)dr \end{pmatrix}.$

 $W_1^*(r)$ and $W_2^*(r)$ denote scalar and *g*-dimensional standard Brownian motions, and $W_1^*(r)$ is independent of $W_2^*(r)$.

(b) The sum of squared residuals, denoted by $RSS_T = \sum_{t=1}^T \hat{u}_t^2$, satisfies

$$T^{-2} \text{RSS}_T \longrightarrow \sigma_1^{*2} H,$$

where $H = \int_0^1 (W_1^*(r))^2 dr - \left(\left(\frac{\int_0^1 W_1^*(r) dr}{\int_0^1 W_2^*(r) W_1^*(r) dr} \right)' \binom{h_1}{h_2} \right)^{-1}.$

(c) The F_T test satisfies:

$$T^{-1}F_T \longrightarrow \frac{1}{m} (\sigma_1^* R^* h_2 - r^*)' \\ \times \left(\sigma_1^{*2} H (0 - R^*) \left(\begin{array}{cc} 1 & \int_0^1 W_2^*(r)' dr \\ \int_0^1 W_2^*(r) dr & \int_0^1 W_2^*(r) W_2^*(r)' dr \end{array} \right)^{-1} (0 - R^*)' \right)^{-1} \\ \times (\sigma_1^* R^* h_2 - r^*),$$

where
$$R^* = RL_{22}$$
 and $r^* = r - R\Sigma_{22}^{-1}\Sigma_{21}$.

Summary: Spurious regression (見せかけの回帰)

Consider the regression model: $y_{1,t} = \alpha + y_{2,t}\gamma + u_t$ for $t = 1, 2, \dots, T$

and $y_t \sim I(1)$ for $y_t = (y_{1,t}, y_{2,t})'$.

(a) indicates that OLSE $\hat{\gamma}_T$ is not consistent.

(b) indicates that
$$s_T^2 = \frac{1}{T-g} \sum_{t=1}^T \hat{u}_t^2$$
 diverges.

(c) indicates that F_T diverges.

 \implies It seems that the coefficients are statistically significant, based on the conventional *t* statistics.

4. Resolution for Spurious Regression:

Suppose that $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$ is a spurious regression.

(1) Estimate
$$y_{1,t} = \alpha + \gamma' y_{2,t} + \phi y_{1,t-1} + \delta y_{2,t-1} + u_t$$
.

Then, $\hat{\gamma}_T$ is \sqrt{T} -consistent, and the *t* test statistic goes to the standard normal distribution under H_0 : $\gamma = 0$.

(2) Estimate $\Delta y_{1,t} = \alpha + \gamma' \Delta y_{2,t} + u_t$. Then, $\hat{\alpha}_T$ and $\hat{\beta}_T$ are \sqrt{T} -consistent, and the *t* test and *F* test make sense.

(3) Estimate $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$ by the Cochrane-Orcutt method, assuming that u_t is the first-order serially correlated error.

Usually, choose (2).

However, there are two exceptions.

(i) The true value of ϕ is not one, i.e., less than one.

(ii) $y_{1,t}$ and $y_{2,t}$ are the cointegrated processes.

In these two cases, taking the first difference leads to the misspecified regression.

5. Cointegrating Vector:

Suppose that each element of y_t is I(1) and that $a'y_t$ is I(0).

a is called a **cointegrating vector** (共和分ベクトル), which is not unique.

Set $z_t = a'y_t$, where z_t is scalar, and a and y_t are $g \times 1$ vectors.

For $z_t \sim I(0)$ (i.e., stationary),

$$T^{-1}\sum_{t=1}^{T} z_t^2 = T^{-1}\sum_{t=1}^{T} (a'y_t)^2 \longrightarrow E(z_t^2).$$

For $z_t \sim I(1)$ (i.e., nonstationary, i.e., *a* is not a cointegrating vector),

$$T^{-2}\sum_{t=1}^{T} (a'y_t)^2 \longrightarrow \lambda^2 \int_0^1 (W(r))^2 \,\mathrm{d}r,$$

where W(r) denotes a standard Brownian motion and λ^2 indicates variance of $(1 - L)z_t$.

203

If *a* is not a cointegrating vector, $T^{-1} \sum_{t=1}^{T} z_t^2$ diverges.

 \implies We can obtain a consistent estimate of a cointegrating vector by minimizing $\sum_{t=1}^{T} z_t^2$ with respect to *a*, where a normalization condition on *a* has to be imposed.

The estimator of the *a* including the normalization condition is super-consistent (*T*-consistent).

● Stock, J.H. (1987) "Asymptotic Properties of Least Squares Estimators of Cointegrating Vectors," *Econometrica*, Vol.55, pp.1035 – 1056.

Proposition:

Let $y_{1,t}$ be a scalar, $y_{2,t}$ be a $k \times 1$ vector, and $(y_{1,t}, y'_{2,t})'$ be a $g \times 1$ vector, where g = k + 1.

Consider the following model:

$$\begin{aligned} y_{1,t} &= \alpha + \gamma' y_{2,t} + z_t^*, \\ \Delta y_{2,t} &= u_{2,t}, \end{aligned} \qquad \begin{pmatrix} z_t^* \\ u_{2,t} \end{pmatrix} = \Psi^*(L) \epsilon_t, \end{aligned}$$

 ϵ_t is a $g \times 1$ i.i.d. vector with $E(\epsilon_t) = 0$ and $E(\epsilon_t \epsilon'_t) = PP'$.

OLSE is given by:
$$\begin{pmatrix} \hat{\alpha} \\ \hat{\gamma} \end{pmatrix} = \begin{pmatrix} T & \sum y'_{2,t} \\ \sum y_{2,t} & \sum y_{2,t}y'_{2,t} \end{pmatrix}^{-1} \begin{pmatrix} \sum y_{1,t} \\ \sum y_{1,t}y_{2,t} \end{pmatrix}$$

Define λ_1^* , which is a $g \times 1$ vector, and Λ_2^* , which is a $k \times g$ matrix, as follows:

$$\Psi^*(1) P = \begin{pmatrix} \lambda_1^{*\prime} \\ \Lambda_2^* \end{pmatrix}.$$

Then, we have the following results:

where
$$\begin{pmatrix} T^{1/2}(\hat{\alpha} - \alpha) \\ T(\hat{\gamma} - \gamma) \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & \left(\Lambda_2^* \int W(r) dr \right)' \\ \Lambda_2^* \int W(r) dr & \Lambda_2^* \left(\int (W(r)) (W(r))' dr \right) \Lambda_2^{*'} \end{pmatrix}^{-1} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix},$$

where $\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \Lambda_2^* \left(\int W(r) (dW(r))' \right) \lambda_1^* + \sum_{\tau=0}^{\infty} E(u_{2,t} z_{t+\tau}^*) \end{pmatrix}.$

W(r) denotes a *g*-dimensional standard Brownian motion.

1) OLSE of the cointegrating vector is consistent even though u_t is serially correlated.

2) The consistency of OLSE implies that $T^{-1} \sum \hat{u}_t^2 \longrightarrow \sigma^2$.

3) Because $T^{-1} \sum (y_{1,t} - \overline{y}_1)^2$ goes to infinity, a coefficient of determination, R^2 , goes to one.

8.6 Testing Cointegration

8.6.1 Engle-Granger Test

 $y_t \sim I(1)$

- $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$
 - $u_t \sim I(0) \implies$ Cointegration
 - $u_t \sim I(1) \implies$ Spurious Regression

Estimate $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$ by OLS, and obtain \hat{u}_t .

Estimate $\hat{u}_t = \rho \hat{u}_{t-1} + \delta_1 \Delta \hat{u}_{t-1} + \delta_2 \Delta \hat{u}_{t-2} + \dots + \delta_{p-1} \Delta \hat{u}_{t-p+1} + e_t$ by OLS.

ADF Test:

- H_0 : $\rho = 1$ (Sprious Regression)
- H_1 : $\rho < 1$ (Cointegration)

\implies Engle-Granger Test

For example, see Engle and Granger (1987), Phillips and Ouliaris (1990) and Hansen (1992).