
8.4 Cointegration (共和分)

1. For a scalar yt, when ∆yt = yt − yt−1 is a white noise (i.e., iid), we write ∆yt ∼ I(0) or yt ∼ I(1).

Deltayt = (1 − L)yt，∆dyt = (1 − L)dyt.

I(0) indicates a stationary process.

∆dyt ∼ I(0) indicates that yt has d unit roots.

∆dyt ∼ I(0) indicates yt ∼ I(d).

2. Definition of Cointegration:

Suppose that each series in a g × 1 vector yt is I(1), i.e., each series has unit root, and that a linear

combination of each series (i.e, a′yt for a nonzero vector a) is I(0), i.e., stationary.

Then, we say that yt has a cointegration.

a is called the cointegrating vector.

3. Example:

Suppose that yt = (y1,t, y2,t)′ is the following vector autoregressive process:

y1,t = ϕ1y2,t + ϵ1,t,
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y2,t = y2,t−1 + ϵ2,t.

Then,

∆y1,t = ϕ1ϵ2,t + ϵ1,t − ϵ1,t−1, (MA(1) process),

∆y2,t = ϵ2,t,

where both y1,t and y2,t are I(1) processes.

The linear combination y1,t − ϕ1y2,t is I(0).

In this case, we say that yt = (y1,t, y2,t)′ is cointegrated with a = (1, −ϕ1).

a = (1, −ϕ1) is called the cointegrating vector, which is not unique.

Therefore, the first element of a is set to be one.

8.5 Spurious Regression (見せかけ回帰)

1. Suppose that yt ∼ I(1) and xt ∼ I(1).

For the regression model yt = xtβ+ut, OLS does not work well if we do not have the β which satisfies

ut ∼ I(0).
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=⇒ Spurious regression (見せかけ回帰)

2. Suppose that yt ∼ I(1), yt is a g × 1 vector and yt =

( y1,t

y2,t

)
.

y2,t is a k × 1 vector, where k = g − 1.

Consider the following regression model:

y1,t = α + γ
′y2,t + ut, t = 1, 2, · · · ,T.

OLSE is given by: (
α̂

γ̂

)
=

( T
∑

y′2,t∑
y2,t

∑
y2,ty′2,t

)−1 ( ∑
y1,t∑

y1,ty2,t

)
.

Next, consider testing the null hypothesis H0 : Rγ = r, where R is a m × k matrix (m ≤ k) and r is a

m × 1 vector.

The F statistic, denoted by FT , is given by:

FT =
1
m

(Rγ̂ − r)′
s2

T ( 0 R )
( T

∑
y′2,t∑

y2,t
∑

y2,ty′2,t

)−1 ( 0

R′

)−1

(Rγ̂ − r),

where

s2
T =

1
T − g

T∑
t=1

(y1,t − α̂ − γ̂′y2,t)2.
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When we have the γ such that y1,t − γy2,t is stationary, OLSE of γ, i.e., γ̂, is not statistically equal to

zero.

When the sample size T is large enough, H0 is rejected by the F test.

3. Phillips, P.C.B. (1986) “Understanding Spurious Regressions in Econometrics,” Journal of Economet-

rics, Vol.33, pp.95 – 131.

Consider a g × 1 vector yt whose first difference is described by:

∆yt = Ψ(L)ϵt =
∞∑

s=0

Ψsϵt−s,

for ϵt an i.i.d. g × 1 vector with mean zero , variance E(ϵtϵ′t ) = PP′, and finite fourth moments and

where {sΨs}∞s=0 is absolutely summable.

Let k = g − 1 and Λ = Ψ(1)P.

Partition yt as yt =

( y1,t

y2,t

)
and ΛΛ′ as ΛΛ′ =

(
Σ11 Σ′21

Σ21 Σ22

)
, where y1,t and Σ11 are scalars, y2,t and Σ21

are k × 1 vectors, and Σ22 is a k × k matrix.

Suppose that ΛΛ′ is nonsingular,and define σ∗21 = Σ11 − Σ′21Σ
−1
22Σ21.
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Let L22 denote the Cholesky factor of Σ−1
22 , i.e., L22 is the lower triangular matrix satisfying Σ−1

22 =

L22L′22.

Then, (a) – (c) hold.

(a) OLSEs of α and γ in the regression model y1,t = α + γ
′y2,t + ut, denoted by α̂T and γ̂T , are

characterized by: ( T−1/2α̂T

γ̂T − Σ−1
22Σ21

)
−→

(
σ∗1h1

σ∗1L22h2

)
,

where
( h1

h2

)
=

( 1
∫ 1

0 W∗2 (r)′dr∫ 1
0 W∗2 (r)dr

∫ 1
0 W∗2 (r)W∗2 (r)′dr

)−1 ( ∫ 1
0 W∗1 (r)dr∫ 1

0 W∗2 (r)W∗1 (r)dr

)
.

W∗1 (r) and W∗2 (r) denote scalar and g-dimensional standard Brownian motions, and W∗1 (r) is

independent of W∗2 (r).

(b) The sum of squared residuals, denoted by RSST =
∑T

t=1 û2
t , satisfies

T−2RSST −→ σ∗21 H,

where H =
∫ 1

0 (W∗1 (r))2dr −
(

∫ 1
0 W∗1 (r)dr∫ 1

0 W∗2 (r)W∗1 (r)dr

)′ ( h1

h2

)−1

.
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(c) The FT test satisfies:

T−1FT −→
1
m

(σ∗1R∗h2 − r∗)′

×
σ∗21 H ( 0 R∗ )

( 1
∫ 1

0 W∗2 (r)′dr∫ 1
0 W∗2 (r)dr

∫ 1
0 W∗2 (r)W∗2 (r)′dr

)−1

( 0 R∗ )′
−1

×(σ∗1R∗h2 − r∗),

where R∗ = RL22 and r∗ = r − RΣ−1
22Σ21.

Summary: Spurious regression (見せかけの回帰)

Consider the regression model: y1.t = α + y2,tγ + ut for t = 1, 2, · · · ,T

and yt ∼ I(1) for yt = (y1,t, y2,t)′.

(a) indicates that OLSE γ̂T is not consistent.

(b) indicates that s2
T =

1
T − g

T∑
t=1

û2
t diverges.
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(c) indicates that FT diverges.

=⇒ It seems that the coefficients are statistically significant, based on the conventional t statistics.
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4. Resolution for Spurious Regression:

Suppose that y1,t = α + γ
′y2,t + ut is a spurious regression.

(1) Estimate y1,t = α + γ
′y2,t + ϕy1,t−1 + δy2,t−1 + ut.

Then, γ̂T is
√

T -consistent, and the t test statistic goes to the standard normal distribution under

H0 : γ = 0.

(2) Estimate ∆y1,t = α + γ
′∆y2,t + ut. Then, α̂T and β̂T are

√
T -consistent, and the t test and F test

make sense.

(3) Estimate y1,t = α + γ
′y2,t + ut by the Cochrane-Orcutt method, assuming that ut is the first-order

serially correlated error.

Usually, choose (2).

However, there are two exceptions.

(i) The true value of ϕ is not one, i.e., less than one.
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(ii) y1,t and y2,t are the cointegrated processes.

In these two cases, taking the first difference leads to the misspecified regression.

5. Cointegrating Vector:

Suppose that each element of yt is I(1) and that a′yt is I(0).

a is called a cointegrating vector (共和分ベクトル), which is not unique.

Set zt = a′yt, where zt is scalar, and a and yt are g × 1 vectors.

For zt ∼ I(0) (i.e., stationary)，

T−1
T∑

t=1

z2
t = T−1

T∑
t=1

(a′yt)2 −→ E(z2
t ).

For zt ∼ I(1) (i.e., nonstationary, i.e., a is not a cointegrating vector),

T−2
T∑

t=1

(a′yt)2 −→ λ2
∫ 1

0
(W(r))2 dr,

where W(r) denotes a standard Brownian motion and λ2 indicates variance of (1 − L)zt.
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If a is not a cointegrating vector, T−1 ∑T
t=1 z2

t diverges.

=⇒We can obtain a consistent estimate of a cointegrating vector by minimizing
∑T

t=1 z2
t with respect

to a, where a normalization condition on a has to be imposed.

The estimator of the a including the normalization condition is super-consistent (T -consistent).

● Stock, J.H. (1987) “Asymptotic Properties of Least Squares Estimators of Cointegrating Vectors,”

Econometrica, Vol.55, pp.1035 – 1056.

Proposition:

Let y1,t be a scalar, y2,t be a k × 1 vector, and (y1,t, y′2,t)
′ be a g × 1 vector, where g = k + 1.

Consider the following model:

y1,t = α + γ
′y2,t + z∗t ,

∆y2,t = u2,t,

( z∗t

u2,t

)
= Ψ∗(L)ϵt,
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ϵt is a g × 1 i.i.d. vector with E(ϵt) = 0 and E(ϵtϵ′t ) = PP′.

OLSE is given by:
(
α̂

γ̂

)
=

( T
∑

y′2,t∑
y2,t

∑
y2,ty′2,t

)−1 ( ∑
y1,t∑

y1,ty2,t

)
.

Define λ∗1, which is a g × 1 vector, and Λ∗2, which is a k × g matrix, as follows:

Ψ∗(1) P =
(
λ∗1
′

Λ∗2

)
.

Then, we have the following results:( T 1/2(α̂ − α)

T (γ̂ − γ)

)
−→

 1
(
Λ∗2

∫
W(r)dr

)′
Λ∗2

∫
W(r)dr Λ∗2

(∫
(W(r)) (W(r))′ dr

)
Λ∗2
′


−1 ( h1

h2

)
,

where
( h1

h2

)
=

 λ∗1
′W(1)

Λ∗2

(∫
W(r) (dW(r))′

)
λ∗1 +

∞∑
τ=0

E(u2,tz∗t+τ)

.
W(r) denotes a g-dimensional standard Brownian motion.

1) OLSE of the cointegrating vector is consistent even though ut is serially correlated.

2) The consistency of OLSE implies that T−1 ∑
û2

t −→ σ2.

3) Because T−1 ∑
(y1,t − y1)2 goes to infinity, a coefficient of determination, R2, goes to one.
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8.6 Testing Cointegration
8.6.1 Engle-Granger Test

yt ∼ I(1)

y1,t = α + γ
′y2,t + ut

• ut ∼ I(0) =⇒ Cointegration

• ut ∼ I(1) =⇒ Spurious Regression

Estimate y1,t = α + γ
′y2,t + ut by OLS, and obtain ût.

Estimate ût = ρût−1 + δ1∆ût−1 + δ2∆ût−2 + · · · + δp−1∆ût−p+1 + et by OLS.

ADF Test:

• H0 : ρ = 1 (Sprious Regression)

• H1 : ρ < 1 (Cointegration)

=⇒ Engle-Granger Test

For example, see Engle and Granger (1987), Phillips and Ouliaris (1990) and Hansen (1992).
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