
11.6 Sampling Method I: Random Number Generation

Note that a lot of distribution functions are introduced in Kotz, Balakrishman and Johnson (2000a, 2000b,

2000c, 2000d, 2000e).

The random draws discussed in this section are based on uniform random draws between zero and one.

11.6.1 Uniform Distribution: U(0, 1)

Properties of Uniform Distribution: The most heuristic and simplest distribution is uniform.

The uniform distribution between zero and one is given by:

f (x) =

 1, for 0 < x < 1,

0, otherwise.

Mean, variance and the moment-generating function are given by:

E(X) =
1
2
, V(X) =

1
12
, ϕ(θ) =

eθ − 1
θ
.

Use L’Hospital’s theorem to derive E(X) and V(X) using ϕ(θ).

In the next section, we introduce an idea of generating uniform random draws, which in turn yield the other

random draws by the transformation of variables, the inverse transform algorithm and so on.

291

Uniform Random Number Generators: It is no exaggeration to say that all the random draws

are based on a uniform random number.

Once uniform random draws are generated, the various random draws such as exponential, normal, logistic,

Bernoulli and other distributions are obtained by transforming the uniform random draws.

Thus, it is important to consider how to generate a uniform random number.

However, generally there is no way to generate exact uniform random draws.

As shown in Ripley (1987) and Ross (1997), a deterministic sequence that appears at random is taken as a

sequence of random numbers.

First, consider the following relation:

m = k − [k/n]n,

where k, m and n are integers.

[k/n] denotes the largest integer less than or equal to the argument.

In Fortran 77, it is written as m=k-int(k/n)*n, where 0 ≤ m < n.

m indicates the remainder (余り) when k is divided by n.

n is called the modulus (商).

292

We define the right hand side in the equation above as:

k − [k/n]n ≡ k mod n.

Then, using the modular arithmetic we can rewrite the above equation as follows:

m = k mod n,

which is represented by: m=mod(k,n) in Fortran 77 and m=k%n in C language.

A basic idea of the uniform random draw is as follows.

Given xi−1, xi is generated by:

xi = (axi−1 + c) mod n,

where 0 ≤ xi < n.

a and c are positive integers, called the multiplier and the increment, respectively.

The generator above have to be started by an initial value, which is called the seed.

ui = xi/n is regarded as a uniform random number between zero and one.

This generator is called the linear congruential generator (線形合同法).

Especially, when c = 0, the generator is called the multiplicative linear congruential generator.

293

This method was proposed by Lehmer in 1948 (see Lehmer, 1951).

If n, a and c are properly chosen, the period of the generator is n.

However, when they are not chosen very carefully, there may be a lot of serial correlation among the generated

values.

Therefore, the performance of the congruential generators depend heavily on the choice of (a, c).

There is a great amount of literature on uniform random number generation.

See, for example, Fishman (1996), Gentle (1998), Kennedy and Gentle (1980), Law and Kelton (2000),

Niederreiter (1992), Ripley (1987), Robert and Casella (1999), Rubinstein and Melamed (1998), Thompson

(2000) and so on for the other congruential generators.

However, we introduce only two uniform random number generators.

Wichmann and Hill (1982 and corrigendum, 1984) describe a combination of three congruential generators

for 16-bit computers.

The generator is given by:

xi = 171xi−1 mod 30269,

yi = 172yi−1 mod 30307,

294

zi = 170zi−1 mod 30323,

and

ui =

(xi

30269
+

yi

30307
+

zi

30323

)
mod 1.

We need to set three seeds, i.e., x0, y0 and z0, for this random number generator.

ui is regarded as a uniform random draw within the interval between zero and one.

The period is of the order of 1012 (more precisely the period is 6.95 × 1012).

For 32-bit computers, L’Ecuyer (1988) proposed a combination of k congruential generators that have prime

moduli n j, such that all values of (n j − 1)/2 are relatively prime, and with multipliers that yield full periods.

Let the sequence from jth generator be x j,1, x j,2, x j,3, · · ·.
Consider the case where each individual generator j is a maximum-period multiplicative linear congruential

generator with modulus n j and multiplier a j, i.e.,

x j,i ≡ a jx j,i−1 mod n j.

Assuming that the first generator is a relatively good one and that n1 is fairly large, we form the ith integer in

295

the sequence as:

xi =

k∑
j=1

(−1) j−1x j,i mod (n1 − 1),

where the other moduli n j, j = 2, 3, · · · , k, do not need to be large.

The normalization takes care of the possibility of zero occurring in this sequence:

ui =


xi

n1
, if xi > 0,

n1 − 1
n1
, if xi = 0.

As for each individual generator j, note as follows.

Define q = [n/a] and r ≡ n mod a, i.e., n is decomposed as n = aq + r, where r < a.

Therefore, for 0 < x < n, we have:

ax mod n = (ax − [x/q]n) mod n

=

(
ax − [x/q](aq + r)

)
mod n

=

(
a(x − [x/q]q) − [x/q]r

)
mod n

=

(
a(x mod q) − [x/q]r

)
mod n.

296

Practically, L’Ecuyer (1988) suggested combining two multiplicative congruential generators, where k = 2,

(a1, n1, q1, r1) = (40014, 2147483563, 53668, 12211) and (a2, n2, q2, r2) = (40692, 2147483399, 52774,

3791) are chosen.

Two seeds are required to implement the generator.

The period of the generator proposed by L’Ecuyer (1988) is of the order of 1018 (more precisely 2.31× 1018),

which is quite long and practically long enough.

L’Ecuyer (1988) presents the results of both theoretical and empirical tests, where the above generator per-

forms well.

Furthermore, L’Ecuyer (1988) gives an additional portable generator for 16-bit computers.

Also, see L’Ecuyer(1990, 1998).

To improve the length of period, the above generator proposed by L’Ecuyer (1988) is combined with the

shuffling method suggested by Bays and Durham (1976), and it is introduced as ran2 in Press, Teukolsky,

Vetterling and Flannery (1992a, 1992b).

297

11.6.2 Transforming U(0, 1): Continuous Type

In this section, we focus on a continuous type of distributions, in which density functions are derived from

the uniform distribution U(0, 1) by transformation of variables.

Normal Distribution: N(0, 1): The normal distribution with mean zero and variance one, i.e, the

standard normal distribution, is represented by:

f (x) =
1
√

2π
e−

1
2 x2
,

for −∞ < x < ∞.

Mean, variance and the moment-generating function are given by:

E(X) = 0, V(X) = 1, ϕ(θ) = exp
(1
2
θ2
)
.

The normal random variable is constructed using two independent uniform random variables.

This transformation is well known as the Box-Muller (1958) transformation and is shown as follows.

Let U1 and U2 be uniform random variables between zero and one.

Suppose that U1 is independent of U2.

298

Consider the following transformation:

X1 =
√
−2 log(U1) cos(2πU2),

X2 =
√
−2 log(U1) sin(2πU2).

where we have −∞ < X1 < ∞ and −∞ < X2 < ∞ when 0 < U1 < 1 and 0 < U2 < 1.

Then, the inverse transformation is given by:

u1 = exp
− x2

1 + x2
2

2

 , u2 =
1

2π
arctan

x2

x1
.

We perform transformation of variables in multivariate cases.

From this transformation, the Jacobian is obtained as:

J =

∣∣∣∣∣∣∣∣∣
∂u1

∂x1

∂u1

∂x2

∂u2

∂x1

∂u2

∂x2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
−x1 exp

(
−1

2
(x2

1 + x2
2)
)
−x2 exp

(
−1

2
(x2

1 + x2
2)
)

1
2π
−x2

x2
1 + x2

2

1
2π

x1

x2
1 + x2

2

∣∣∣∣∣∣∣∣
= − 1

2π
exp
(
−1

2
(x2

1 + x2
2)
)
.

Let fx(x1, x2) be the joint density of X1 and X2 and fu(u1, u2) be the joint density of U1 and U2.

299

Since U1 and U2 are assumed to be independent, we have the following:

fu(u1, u2) = f1(u1) f2(u2) = 1,

where f1(u1) and f2(u2) are the density functions of U1 and U2, respectively.

Note that f1(u1) = f2(u2) = 1 because U1 and U2 are uniform random variables between zero and one.

Accordingly, the joint density of X1 and X2 is:

fx(x1, x2) = |J| fu
(
exp(−

x2
1 + x2

2

2
),

1
2π

arctan
x2

x1

)
=

1
2π

exp
(
−1

2
(x2

1 + x2
2)
)

=
1
√

2π
exp
(
−1

2
x2

1

)
× 1
√

2π
exp
(
−1

2
x2

2

)
,

which is a product of two standard normal distributions.

Thus, X1 and X2 are mutually independently distributed as normal random variables with mean zero and

variance one.

See Hogg and Craig (1995, pp.177 – 178).

Therefore, to avoid computation of the sine, various algorithms have been invented (Ahrens and Dieter (1988),

Fishman (1996), Gentle (1998), Marsaglia, MacLaren and Bray (1964) and so on).

300

Exponential Distribution: The exponential distribution with parameter β is written as:

f (x) =


1
β

e−
x
β , for 0 < x < ∞,

0, otherwise,

for β > 0.

β indicates a scale parameter.

Mean, variance and the moment-generating function are obtained as follows:

E(X) = β, V(X) = β2, ϕ(θ) =
1

1 − βθ .

The relation between the exponential random variable the uniform random variable is shown as follows:

When U ∼ U(0, 1), consider the following transformation:

X = −β log(U).

Then, X is an exponential distribution with parameter β.

Because the transformation is given by u = exp(−x/β), the Jacobian is:

J =
du
dx
= −1
β

exp
(
−1
β

x
)
.

301

By transforming the variables, the density function of X is represented as:

f (x) = |J| fu
(
exp(−1

β
x)
)
=

1
β

exp
(
−1
β

x
)
,

where f (·) and fu(·) denote the probability density functions of X and U, respectively.

Note that 0 < x < ∞ because of x = −β log(u) and 0 < u < 1.

Thus, the exponential distribution with parameter β is obtained from the uniform random draw between zero

and one.

When β = 2, the exponential distribution reduces to the chi-square distribution with 2 degrees of freedom.

Gamma Distribution: G(α, β): The gamma distribution with parameters α and β, denoted by

G(α, β), is represented as follows:

f (x) =


1

βαΓ(α)
xα−1e−

x
β , for 0 < x < ∞,

0, otherwise,

for α > 0 and β > 0, where α is called a shape parameter and β denotes a scale parameter.

302

Γ(·) is called the gamma function, which is the following function of α:

Γ(α) =
∫ ∞

0
xα−1e−x dx.

The gamma function has the following features:

Γ(α + 1) = αΓ(α), Γ(1) = 1, Γ

(1
2

)
= 2Γ
(3
2

)
=
√
π.

Mean, variance and the moment-generating function are given by:

E(X) = αβ, V(X) = αβ2, ϕ(θ) =
1

(1 − βθ)α .

The gamma distribution with α = 1 is equivalent to the exponential distribution shown in Section 11.6.2.

This fact is easily checked by comparing both moment-generating functions.

Now, utilizing the uniform random variable, the gamma distribution with parameters α and β are derived as

follows.

The derivation shown in this section deals with the case where α is a positive integer, i.e., α = 1, 2, 3, · · ·.
The random variables Z1, Z2, · · ·, Zα are assumed to be mutually independently distributed as exponential

random variables with parameter β, which are shown in Section 11.6.2.

303

Define X =
∑α

i=1 Zi.

Then, X has distributed as a gamma distribution with parameters α and β, where α should be an integer, which

is proved as follows:

ϕx(θ) = E(eθX) = E(eθ
∑α

i=1 Zi) =
α∏

i=1

E(eθZi) =
α∏

i=1

ϕi(θ) =
α∏

i=1

1
1 − βθ

=
1

(1 − βθ)α ,

where ϕx(θ) and ϕi(θ) represent the moment-generating functions of X and Zi, respectively.

Thus, sum of the α exponential random variables yields the gamma random variable with parameters α and

β.

When α is large, we have serious problems computationally in the above algorithm, because α exponential

random draws have to be generated to obtain one gamma random draw with parameters α and β.

When α = k/2 and β = 2, the gamma distribution reduces to the chi-square distribution with k degrees of

freedom.

304

Chi-Square Distribution: χ2(k): The chi-square distribution with k degrees of freedom, denoted

by χ2(k), is written as follows:

f (x) =


1

2k/2Γ
(

k
2

) x k
2−1e−

1
2 x, for 0 < x < ∞,

0, otherwise,

where k is a positive integer.

The chi-square distribution is equivalent to the gamma distribution with β = 2 and α = k/2.

The chi-square distribution with k = 2 reduces to the exponential distribution with β = 2, shown in Section

11.6.2.

Mean, variance and the moment-generating function are given by:

E(X) = k, V(X) = 2k, ϕ(θ) =
1

(1 − 2θ)k/2 .

305

F Distribution: F(m, n): The F distribution with m and n degrees of freedom, denoted by F(m, n), is

represented as:

f (x) =


Γ
(

m+n
2

)
Γ
(

m
2

)
Γ
(

n
2

) (m
n

) m
2

x
m
2 −1
(
1 +

m
n

x
)− m+n

2
, for 0 < x < ∞,

0, otherwise,

where m and n are positive integers.

Mean and variance are given by:

E(X) =
n

n − 2
, for n > 2,

V(X) =
2n2(m + n − 2)

m(n − 2)2(n − 4)
, for n > 4.

The moment-generating function of F distribution does not exist.

One F random variable is derived from two chi-square random variables.

Suppose that U and V are independently distributed as chi-square random variables, i.e., U ∼ χ2(m) and

V ∼ χ2(n).

Then, it is shown that X =
U/m
V/n

has a F distribution with (m, n) degrees of freedom.

306

t Distribution: t(k): The t distribution (or Student’s t distribution) with k degrees of freedom, denoted

by t(k), is given by:

f (x) =
Γ
(

k+1
2

)
Γ
(

k
2

) 1
√

kπ

(
1 +

x2

k

)− k+1
2
,

for −∞ < x < ∞, where k does not have to be an integer but conventionally it is a positive integer.

When k is small, the t distribution has fat tails.

The t distribution with k = 1 is equivalent to the Cauchy distribution.

As k goes to infinity, the t distribution approaches the standard normal distribution, i.e., t(∞) = N(0, 1), which

is easily shown by using the definition of e, i.e.,(
1 +

x2

k

)− k+1
2
=

(
1 +

1
h

)− hx2+1
2
=

((
1 +

1
h

)h)− 1
2 x2(

1 +
1
h

)− 1
2 −→ e−

1
2 x2
,

where h = k/x2 is set and h goes to infinity (equivalently, k goes to infinity).

Thus, a kernel of the t distribution is equivalent to that of the standard normal distribution.

Therefore, it is shown that as k is large the t distribution approaches the standard normal distribution.

Mean and variance of the t distribution with k degrees of freedom are obtained as:

E(X) = 0, for k > 1,

307

V(X) =
k

k − 2
, for k > 2.

In the case of the t distribution, the moment-generating function does not exist, because all the moments do

not necessarily exist.

For the t random variable X, we have the fact that E(Xp) exists when p is less than k.

Therefore, all the moments exist only when k is infinity.

One t random variable is obtained from chi-square and standard normal random variables.

Suppose that Z ∼ N(0, 1) is independent of U ∼ χ2(k).

Then, X = Z/
√

U/k has a t distribution with k degrees of freedom.

Marsaglia (1984) gives a very fast algorithm for generating t random draws, which is based on a transformed

acceptance/rejection method, which will be discussed later.

Gentle, J.E., 1998, Random Number Generation and Monte Carlo Methods, Springer-Verlag.

Kennedy, Jr. W.J. and Gentle, J.E., 1980, Statistical Computing (Statistics: Textbooks and Monographs,

Vol.33), Marcel Dekker.

Ripley, B.D., 1987, Stochastic Simulation, John Wiley & Sons.

308

11.7 Sampling Method II: Random Number Generation
11.7.1 Rejection Sampling (棄却法)

We want to generate random draws from f (x), called the target density (目的密度), but we consider the case

where it is hard to sample from f (x).

Now, suppose that it is easy to generate a random draw from another density f∗(x), called the sampling

density (サンプリング密度) or proposal density (提案密度).

In this case, random draws of X from f (x) are generated by utilizing the random draws sampled from f∗(x).

Let x be the the random draw of X generated from f (x).

Suppose that q(x) is equal to the ratio of the target density and the sampling density, i.e.,

q(x) =
f (x)
f∗(x)
. (1)

Then, the target density is rewritten as:

f (x) = q(x) f∗(x).

Based on q(x), the acceptance probability is obtained.

Depending on the structure of the acceptance probability, we have three kinds of sampling techniques, i.e.,

309

rejection sampling (棄却法) in this section, importance resampling (重点的リサンプリング法) in Section

11.7.2 and the Metropolis-Hastings algorithm (メトロポリス－ハスティング・アルゴリズム) in Section

??.

See Liu (1996) for a comparison of the three sampling methods.

Thus, to generate random draws of x from f (x), the functional form of q(x) should be known and random

draws have to be easily generated from f∗(x).

In order for rejection sampling to work well, the following condition has to be satisfied:

q(x) =
f (x)
f∗(x)

< c,

where c is a fixed value.

That is, q(x) has an upper limit.

As discussed below, 1/c is equivalent to the acceptance probability.

If the acceptance probability is large, rejection sampling computationally takes a lot of time.

Under the condition q(x) < c for all x, we may minimize c.

That is, since we have q(x) < supx q(x) ≤ c, we may take the supremum of q(x) for c.

Thus, in order for rejection sampling to work efficiently, c should be the supremum of q(x) with respect to x,

310

i.e., c = supx q(x).

Let x∗ be the random draw generated from f∗(x), which is a candidate of the random draw generated from

f (x).

Define ω(x) as:

ω(x) =
q(x)

supz q(z)
=

q(x)
c
,

which is called the acceptance probability (採択確率).

Note that we have 0 ≤ ω(x) ≤ 1 when supz q(z) = c < ∞.

The supremum supz q(z) = c has to be finite.

This condition is sometimes too restrictive, which is a crucial problem in rejection sampling.

A random draw of X is generated from f (x) in the following way:

(i) Generate x∗ from f∗(x) and compute ω(x∗).

(ii) Set x = x∗ with probability ω(x∗) and go back to (i) otherwise.

In other words, generating u from a uniform distribution between zero and one, take x = x∗ if u ≤

ω(x∗) and go back to (i) otherwise.

The above random number generation procedure can be justified as follows.

311

Let U be the uniform random variable between zero and one, X be the random variable generated from the

target density f (x),

X∗ be the random variable generated from the sampling density f∗(x), and x∗ be the realization (i.e., the

random draw) generated from the sampling density f∗(x).

Consider the probability P
(
X ≤ x|U ≤ ω(x∗)

)
, which should be the cumulative distribution of X, F(x), from

Step (ii).

The probability P
(
X ≤ x|U ≤ ω(x∗)

)
is rewritten as follows:

P
(
X ≤ x|U ≤ ω(x∗)

)
=

P
(
X ≤ x,U ≤ ω(x∗)

)
P
(
U ≤ ω(x∗)

) ,

where the numerator is represented as:

P
(
X ≤ x,U ≤ ω(x∗)

)
=

∫ x

−∞

∫ ω(t)

0
fu,∗(u, t) du dt =

∫ x

−∞

∫ ω(t)

0
fu(u) f∗(t) du dt

=

∫ x

−∞

(∫ ω(t)

0
fu(u) du

)
f∗(t) dt =

∫ x

−∞

(∫ ω(t)

0
du
)

f∗(t) dt

=

∫ x

−∞

[
u
]ω(t)

0
f∗(t) dt =

∫ x

−∞
ω(t) f∗(t) dt =

∫ x

−∞

q(t)
c

f∗(t) dt =
F(x)

c
,

312

and the denominator is given by:

P
(
U ≤ ω(x∗)

)
= P
(
X ≤ ∞,U ≤ ω(x∗)

)
=

F(∞)
c
=

1
c
.

In the numerator, fu,∗(u, x) denotes the joint density of random variables U and X∗.

Because the random draws of U and X∗ are independently generated in Steps (i) and (ii) we have fu,∗(u, x) =

fu(u) f∗(x), where fu(u) and f∗(x) denote the marginal density of U and that of X∗.

The density function of U is given by fu(u) = 1, because the distribution of U is assumed to be uniform

between zero and one.

Thus, the first four equalities are derived.

Furthermore, in the seventh equality of the numerator, since we have:

ω(x) =
q(x)

c
=

f (x)
c f∗(x)

,

ω(x) f∗(x) = f (x)/c is obtained.

Finally, substituting the numerator and denominator shown above, we have the following equality:

P
(
X ≤ x|U ≤ ω(x∗)

)
= F(x).

313

Thus, the rejection sampling method given by Steps (i) and (ii) is justified.

The rejection sampling method is the most efficient sampling method in the sense of precision of the random

draws, because using rejection sampling we can generate mutually independently distributed random draws.

However, for rejection sampling we need to obtain the c which is greater than or equal to the supremum of

q(x).

If the supremum is infinite, i.e., if c is infinite, ω(x) is zero and accordingly the candidate x∗ is never accepted

in Steps (i) and (ii).

See, for example, Boswell, Gore, Patil and Taillie (1993), O’Hagan (1994) and Geweke (1996) for rejection

sampling.

11.7.2 Importance Resampling (重点的リサンプリング)

The importance resampling method also utilizes the sampling density f∗(x), where we should choose the

sampling density from which it is easy to generate random draws.

Let x∗i be the ith random draw of x generated from f∗(x).

314

The acceptance probability is defined as:

ω(x∗i) =
q(x∗i)∑n
j=1 q(x∗j)

,

where q(·) is represented as equation (1).

To obtain a random draws from f (x), we perform the following procedure:

(i) Generate x∗j from the sampling density f∗(x) for j = 1, 2, · · · , n.

(ii) Compute ω(x∗j) for all j = 1, 2, · · · , n.

(iii) Generate a uniform random draw u between zero and one and take x = x∗j whenΩ j−1 ≤ u < Ω j, where

Ω j =
∑ j

i=1 ω(x∗i) and Ω0 ≡ 0.

The x obtained in Step (iii) represents a random draw from the target density f (x).

In Step (ii), all the probability weights ω(x∗j), j = 1, 2, · · · , n, have to be computed for importance resampling.

Thus, we need to generate n random draws from the sampling density f∗(x) in advance.

When we want to generate more random draws (say, N random draws), we may repeat Step (iii) N times.

In the importance resampling method, there are n realizations, i.e., x∗1, x∗2, · · ·, x∗n, which are mutually inde-

pendently generated from the sampling density f∗(x).

315

The cumulative distribution of f (x) is approximated by the following empirical distribution:

P(X ≤ x) =
∫ x

−∞
f (t) dt =

∫ x

−∞

f (t)
f∗(t)

f∗(t) dt =

∫ x
−∞ q(t) f∗(t) dt∫ ∞
−∞ q(t) f∗(t) dt

≈
(1/n)

∑n
i=1 q(x∗i)I(x, x∗i)

(1/n)
∑n

j=1 q(x∗j)
=

n∑
i=1

ω(x∗i)I(x, x∗i),

where I(x, x∗i) denotes the indicator function which satisfies I(x, x∗i) = 1 when x ≥ x∗i and I(x, x∗i) = 0

otherwise.

P(X = x∗i) is approximated as ω(x∗i).

See Smith and Gelfand (1992) and Bernardo and Smith (1994) for the importance resampling procedure.

As mentioned in Section 11.7.1, for rejection sampling, f (x) may be a kernel of the target density, or equiva-

lently, f (x) may be proportional to the target density.

Similarly, the same situation holds in the case of importance resampling.

That is, f (x) may be proportional to the target density for importance resampling, too.

To obtain a random draws from f (x), importance resampling requires n random draws from the sampling

density f∗(x), but rejection sampling needs (1 + NR) random draws from the sampling density f∗(x).

For importance resampling, when we have n different random draws from the sampling density, we pick up

316

one of them with the corresponding probability weight.

The importance resampling procedure computationally takes a lot of time, because we have to compute all

the probability weights Ω j, j = 1, 2, · · · , n, in advance even when we want only one random draw.

11.7.3 Metropolis-Hastings Algorithm (メトロポリスーハスティングス・アルゴリ
ズム)

This section is based on Geweke and Tanizaki (2003), where three sampling distributions are compared with

respect to precision of the random draws from the target density f (x).

The Metropolis-Hastings algorithm is also one of the sampling methods to generate random draws from

any target density f (x), utilizing sampling density f∗(x), even in the case where it is not easy to generate

random draws from the target density.

Let us define the acceptance probability by:

ω(xi−1, x∗) = min
(q(x∗)
q(xi−1)

, 1
)
= min

(f (x∗)/ f∗(x∗)
f (xi−1)/ f∗(xi−1)

, 1
)
,

where q(·) is defined as equation (1).

By the Metropolis-Hastings algorithm, a random draw from f (x) is generated in the following way:

317

(i) Take the initial value of x as x−M .

(ii) Generate x∗ from f∗(x) and compute ω(xi−1, x∗) given xi−1.

(iii) Set xi = x∗ with probability ω(xi−1, x∗) and xi = xi−1 otherwise.

(iv) Repeat Steps (ii) and (iii) for i = −M + 1,−M + 2, · · · , 1.

In the above algorithm, x1 is taken as a random draw from f (x).

When we want more random draws (say, N), we replace Step (iv) by Step (iv)’, which is represented as

follows:

(iv)’ Repeat Steps (ii) and (iii) for i = −M + 1,−M + 2, · · · ,N.

When we implement Step (iv)’, we can obtain a series of random draws x−M , x−M+1, · · ·, x0, x1, x2, · · ·, xN ,

where x−M , x−M+1, · · ·, x0 are discarded from further consideration.

The last N random draws are taken as the random draws generated from the target density f (x).

Thus, N denotes the number of random draws.

M is sometimes called the burn-in period.

We can justify the above algorithm given by Steps (i) – (iv) as follows.

The proof is very similar to the case of rejection sampling in Section 11.7.1.

318

We show that xi is the random draw generated from the target density f (x) under the assumption xi−1 is

generated from f (x).

Let U be the uniform random variable between zero and one, X be the random variable which has the density

function f (x) and x∗ be the realization (i.e., the random draw) generated from the sampling density f∗(x).

Consider the probability P
(
X ≤ x|U ≤ ω(xi−1, x∗)

)
, which should be the cumulative distribution of X, i.e.,

F(x).

The probability P
(
X ≤ x|U ≤ ω(xi−1, x∗)

)
is rewritten as follows:

P
(
X ≤ x|U ≤ ω(xi−1, x∗)

)
=

P
(
X ≤ x,U ≤ ω(xi−1, x∗)

)
P
(
U ≤ ω(xi−1, x∗)

) ,

where the numerator is represented as:

P
(
X ≤ x,U ≤ ω(xi−1, x∗)

)
=

∫ x

−∞

∫ ω(xi−1,t)

0
fu,∗(u, t) du dt

=

∫ x

−∞

∫ ω(xi−1,t)

0
fu(u) f∗(t) du dt =

∫ x

−∞

(∫ ω(xi−1,t)

0
fu(u) du

)
f∗(t) dt

=

∫ x

−∞

(∫ ω(xi−1,t)

0
du
)

f∗(t) dt =
∫ x

−∞

[
u
]ω(xi−1,t)

0
f∗(t) dt

319

=

∫ x

−∞
ω(xi−1, t) f∗(t) dt =

∫ x

−∞

f∗(xi−1) f (t)
f (xi−1)

dt =
f∗(xi−1)
f (xi−1)

F(x)

and the denominator is given by:

P
(
U ≤ ω(xi−1, x∗)

)
= P
(
X ≤ ∞,U ≤ ω(xi−1, x∗)

)
=

f∗(xi−1)
f (xi−1)

F(∞) =
f∗(xi−1)
f (xi−1)

.

The density function of U is given by fu(u) = 1 for 0 < u < 1.

Let X∗ be the random variable which has the density function f∗(x).

In the numerator, fu,∗(u, x) denotes the joint density of random variables U and X∗.

Because the random draws of U and X∗ are independently generated, we have fu,∗(u, x) = fu(u) f∗(x) = f∗(x).

Thus, the first four equalities are derived.

Substituting the numerator and denominator shown above, we have the following equality:

P
(
X ≤ x|U ≤ ω(xi−1, x∗)

)
= F(x).

Thus, the x∗ which satisfies u ≤ ω(xi−1, x∗) indicates a random draw from f (x).

We set xi = xi−1 if u ≤ ω(xi−1, x∗) is not satisfied. xi−1 is already assumed to be a random draw from f (x).

Therefore, it is shown that xi is a random draw from f (x).

320

See Gentle (1998) for the discussion above.

As in the case of rejection sampling and importance resampling, note that f (x) may be a kernel of the target

density, or equivalently, f (x) may be proportional to the target density.

The same algorithm as Steps (i) – (iv) can be applied to the case where f (x) is proportional to the target

density, because f (x∗) is divided by f (xi−1) in ω(xi−1, x∗).

As a general formulation of the sampling density, instead of f∗(x), we may take the sampling density as the

following form: f∗(x|xi−1), where a candidate random draw x∗ depends on the (i−1)th random draw, i.e., xi−1.

For choice of the sampling density f∗(x|xi−1), Chib and Greenberg (1995) pointed out as follows.

f∗(x|xi−1) should be chosen so that the chain travels over the support of f (x), which implies that f∗(x|i−1)

should not have too large variance and too small variance, compared with f (x).

See, for example, Smith and Roberts (1993), Bernardo and Smith (1994), O’Hagan (1994), Tierney (1994),

Geweke (1996), Gamerman (1997), Robert and Casella (1999) and so on for the Metropolis-Hastings algo-

rithm.

Therefore, for precision of the random draws, the Metropolis-Hastings algorithm gives us the worst random

number of the three sampling methods. i.e., rejection sampling in Section 11.7.1, importance resampling in

321

Section 11.7.2 and the Metropolis-Hastings algorithm in this section.

Based on Steps (i) – (iii) and (iv)’, under some conditions the basic result of the Metropolis-Hastings algo-

rithm is as follows:

1
N

N∑
i=1

g(xi) −→ E
(
g(x)
)
=

∫
g(x) f (x) dx, as N −→ ∞,

where g(·) is a function, which is representatively taken as g(x) = x for mean and g(x) = (x− x)2 for variance.

x denotes x = (1/N)
∑N

i=1 xi.

Thus, it is shown that (1/N)
∑N

i=1 g(xi) is a consistent estimate of E
(
g(x)
)
, even though x1, x2, · · ·, xN are

mutually correlated.

Furthermore, the sampling density has to satisfy the following conditions:

(i) we can quickly and easily generate random draws from the sampling density and

(ii) the sampling density should be distributed with the same range as the target density.

See, for example, Geweke (1992) and Mengersen, Robert and Guihenneuc-Jouyaux (1999) for the MCMC

convergence diagnostics.

322

Since the random draws based on the Metropolis-Hastings algorithm heavily depend on choice of the sam-

pling density, we can see that the Metropolis-Hastings algorithm has the problem of specifying the sampling

density, which is the crucial criticism.

Several generic choices of the sampling density are discussed by Tierney (1994) and Chib and Greenberg

(1995).

3.4.1.1 Sampling Density I (Independence Chain) For the sampling density, we have started

with f∗(x) in this section.

Thus, one possibility of the sampling density is given by: f∗(x|xi−1) = f∗(x), where f∗(·) does not depend on

xi−1.

This sampling density is called the independence chain.

For example, it is possible to take f∗(x) = N(µ∗, σ2
∗), where µ∗ and σ2

∗ are the hyper-parameters.

Or, when x lies on a certain interval, say (a, b), we can choose the uniform distribution f∗(x) = 1/(b − a) for

the sampling density.

323

3.4.1.2 Sampling Density II (Random Walk Chain) We may take the sampling density

called the random walk chain, i.e., f∗(x|xi−1) = f∗(x − xi−1).

Representatively, we can take the sampling density as f∗(x|xi−1) = N(xi−1, σ2
∗), where σ2

∗ denotes the hyper-

parameter.

Based on the random walk chain, we have a series of the random draws which follow the random walk

process.

3.4.1.3 Sampling Density III (Taylored Chain) The alternative sampling distribution is based

on approximation of the log-kernel (see Geweke and Tanizaki (1999, 2001, 2003)), which is a substantial

extension of the Taylored chain discussed in Chib, Greenberg and Winkelmann (1998).

Let p(x) = log(f (x)), where f (x) may denote the kernel which corresponds to the target density.

Approximating the log-kernel p(x) around xi−1 by the second order Taylor series expansion, p(x) is repre-

sented as:

p(x) ≈ p(xi−1) + p′(xi−1)(x − xi−1) +
1
2

p′′(xi−1)(x − xi−1)2, (2)

where p′(·) and p′′(·) denote the first- and second-derivatives.

Depending on the values of p′(x) and p′′(x), we have the three cases: p′′(x) < 0, p′′(x) ≥ 0 and p′(x) = 0.

324

Geweke and Tanizaki (2003) suggested introducing ϵ into the Taylored chain discussed in Geweke and

Tanizaki (1999, 2001).

p′′(xi−1) < 0: Equation (2) is rewritten by:

p(x) ≈ p(xi−1) − 1
2

(1
−1/p′′(xi−1)

)(
x − (xi−1 −

p′(xi−1)
p′′(xi−1)

)
)2
+ r(xi−1),

where r(xi−1) is an appropriate function of xi−1.

Since p′′(xi−1) is negative, the second term in the right-hand side is equivalent to the exponential part of the

normal density.

Therefore, f∗(x|xi−1) is taken as N(µ∗, σ2
∗), where µ∗ = xi−1 − p′(xi−1)/p′′(xi−1) and σ2

∗ = −1/p′′(xi−1).

11.7.4 Gibbs Sampling

The sampling methods introduced in Sections 11.7.1 – 11.7.3 can be applied to the cases of both univariate

and multivariate distributions.

The Gibbs sampler in this section is the random number generation method in the multivariate cases.

The Gibbs sampler shows how to generate random draws from the unconditional densities under the situation

that we can generate random draws from two conditional densities.

325

Geman and Geman (1984), Tanner and Wong (1987), Gelfand, Hills, Racine-Poon and Smith (1990), Gelfand

and Smith (1990), Carlin and Polson (1991), Zeger and Karim (1991), Casella and George (1992), Gamerman

(1997) and so on developed the Gibbs sampling theory.

Carlin, Polson and Stoffer (1992), Carter and Kohn (1994, 1996) and Geweke and Tanizaki (1999, 2001)

applied the Gibbs sampler to the nonlinear and/or non-Gaussian state-space models.

There are numerous other applications of the Gibbs sampler.

The Gibbs sampling theory is concisely described as follows.

We can deal with more than two random variables, but we consider two random variables X and Y in order to

make things easier.

Two conditional density functions, fx|y(x|y) and fy|x(y|x), are assumed to be known, which denote the condi-

tional distribution function of X given Y and that of Y given X, respectively.

Suppose that we can easily generate random draws of X from fx|y(x|y) and those of Y from fy|x(y|x).

However, consider the case where it is not easy to generate random draws from the joint density of X and Y ,

denoted by fxy(x, y).

In order to have the random draws of (X,Y) from the joint density fxy(x, y), we take the following procedure:

326

(i) Take the initial value of X as x−M .

(ii) Given xi−1, generate a random draw of Y , i.e., yi, from f (y|xi−1).

(iii) Given yi, generate a random draw of X, i.e., xi, from f (x|yi).

(iv) Repeat the procedure for i = −M + 1,−M + 2, · · · , 1.

From the convergence theory of the Gibbs sampler, as M goes to infinity, we can regard x1 and y1 as random

draws from fxy(x, y), which is a joint density function of X and Y .

M denotes the burn-in period, and the first M random draws, (xi, yi) for i = −M + 1,−M + 2, · · · , 0, are

excluded from further consideration.

When we want N random draws from fxy(x, y), Step (iv) should be replaced by Step (iv)’, which is as follows.

(iv)’ Repeat the procedure for i = −M + 1,−M + 2, · · · ,N.

As in the Metropolis-Hastings algorithm, the algorithm shown in Steps (i) – (iii) and (iv)’ is formulated as

follows:

fi(u) =
∫

f ∗(u|v) fi−1(v) dv.

For convergence of the Gibbs sampler, we need to have the invariant distribution f (u) which satisfies fi(u) =

327

fi−1(u) = f (u). If we have the reversibility condition shown in equation (??), i.e.,

f ∗(v|u) f (u) = f ∗(u|v) f (v),

the random draws based on the Gibbs sampler converge to those from the invariant distribution, which implies

that there exists the invariant distribution f (u).

Therefore, in the Gibbs sampling algorithm, we have to find the transition distribution, i.e., f ∗(u|v).

Here, we consider that both u and v are bivariate vectors.

That is, f ∗(u|v) and fi(u) denote the bivariate distributions. xi and yi are generated from fi(u) through f ∗(u|v),

given fi−1(v).

Note that u = (u1, u2) = (xi, yi) is taken while v = (v1, v2) = (xi−1, yi−1) is set.

The transition distribution in the Gibbs sampler is taken as:

f ∗(u|v) = fy|x(u2|u1) fx|y(u1|v2)

Thus, we can choose f ∗(u|v) as shown above.

Then, as i goes to infinity, (xi, yi) tends in distribution to a random vector whose joint density is fxy(x, y).

See, for example, Geman and Geman (1984) and Smith and Roberts (1993).

328

Furthermore, under the condition that there exists the invariant distribution, the basic result of the Gibbs

sampler is as follows:

1
N

N∑
i=1

g(xi, yi) −→ E
(
g(x, y)

)
=

∫∫
g(x, y) fxy(x, y) dx dy, as N −→ ∞,

where g(·, ·) is a function.

The Gibbs sampler is a powerful tool in a Bayesian framework.

Based on the conditional densities, we can generate random draws from the joint density.

Remark 1: We have considered the bivariate case, but it is easily extended to the multivariate cases.

That is, it is possible to take multi-dimensional vectors for x and y.

Taking an example, as for the tri-variate random vector (X,Y,Z), if we generate the ith random draws

from fx|yz(x|yi−1, zi−1), fy|xz(y|xi, zi−1) and fz|xy(z|xi, yi), sequentially, we can obtain the random draws from

fxyz(x, y, z).

Remark 2: Let X, Y and Z be the random variables.

Take an example of the case where X is highly correlated with Y .

329

If we generate random draws from fx|yz(x|y, z), fy|xz(y|x, z) and fz|xy(z|x, y), it is known that convergence of the

Gibbs sampler is slow.

In this case, without separating X and Y , random number generation from f (x, y|z) and f (z|x, y) yields better

random draws from the joint density f (x, y, z).

References

Carlin, B.P. and Polson, N.G., 1991, “Inference for Nonconjugate Bayesian Models Using the Gibbs

Sampler,” Canadian Journal of Statistics, Vol.19, pp.399 – 405.

Carlin, B.P., Polson, N.G. and Stoffer, D.S., 1992, “A Monte Carlo Approach to Nonnormal and Nonlinear

State Space Modeling,” Journal of the American Statistical Association, Vol.87, No.418, pp.493 –

500.

Carter, C.K. and Kohn, R., 1994, “On Gibbs Sampling for State Space Models,” Biometrika, Vol.81, No.3,

pp.541 – 553.

Carter, C.K. and Kohn, R., 1996, “Markov Chain Monte Carlo in Conditionally Gaussian State Space Mod-

els,” Biometrika, Vol.83, No.3, pp.589 – 601.

330

Casella, G. and George, E.I., 1992, “Explaining the Gibbs Sampler,” The American Statistician, Vol.46,

pp.167 – 174.

Chib, S. and Greenberg, E., 1995, “Understanding the Metropolis-Hastings Algorithm,” The American Statis-

tician, Vol.49, No.4, pp.327 – 335.

Gamerman, D., 1997, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Chapman

& Hall.

Gelfand, A.E. and Smith, A.F.M., 1990, “Sampling-Based Approaches to Calculating Marginal Densities,”

Journal of the American Statistical Association, Vol.85, No.410, pp.398 – 409.

Liu, J.S., 1996, “Metropolized Independent Sampling with Comparisons to Rejection Sampling and Impor-

tance Sampling,” Statistics and Computing, Vol.6, pp.113 – 119.

Mengersen, K.L., Robert, C.P. and Guihenneuc-Jouyaux, C., 1999, “MCMC Convergence Diagnostics: A

Reviewww,” in Bayesian Statistics, Vol.6, edited by Bernardo, J.M., Berger, J.O., Dawid, A.P. and

Smith, A.F.M., pp.514 – 440 (with discussion), Oxford University Press.

Smith, A.F.M. and Gelfand, A.E., 1992, “Bayesian Statistics without Tears: A Sampling-Resampling

Perspective,” The American Statistician, Vol.46, No.2, pp.84 – 88.

331

Smith, A.F.M. and Roberts, G.O., 1993, “Bayesian Computation via Gibbs Sampler and Related Markov

Chain Monte Carlo Methods,” Journal of the Royal Statistical Society, Ser.B, Vol.55, No.1, pp.3 – 23.

Tanner, M.A. and Wong, W.H., 1987, “The Calculation of Posterior Distributions by Data Augmentation,”

Journal of the American Statistical Association, Vol.82, No.398, pp.528 – 550 (with discussion).

Tierney, L., 1994, “Markov Chains for Exploring Posterior Distributions,” The Annals of Statistics, Vol.22,

No.4, pp.1701 – 1762.

332

